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Foreword

This text, as the edition before it, was especially designed and written for teachers and stu­
dents of Advanced Placement Calculus. Combining the scholarship of Ross Finney and 
Frank Demana, the technological expertise of Bert Waits, and the intimate knowledge of 
and experience with the Advanced Placement Program of Dan Kennedy, this text is truly 
unique among calculus texts. It may be used, in perfect order and without supplementa­
tion, from the first day of the course until the day of the AP* exam. Teachers who are new 
to teaching calculus, as well as those who are very experienced, will be amazed at the 
insightful and unique treatment of many topics.

The text is a perfect balance of exploration and theory. Students are asked to explore many 
topics before theoretical proof. The topic of slope fields, studied at the beginning of Chapter 
6 when differential equations are first introduced, has been considerably expanded. Local 
linearity, stressed throughout the text, permits the early introduction of l’Hopital’s Rule. 
When the definite integral is introduced, students are first asked to find total change given 
over a specific period of time given a rate of change before they consider geometric appli­
cations. The section on logistic growth— so important in real-life situations—has been 
expanded. Functions are defined graphically, with tables, and with words as well as alge­
braically throughout the text. Problems and exercises throughout are based on real-life sit­
uations, and many are similar to questions appearing on the AP* exams. The series chapter 
uses technology to enhance understanding. This is a brilliant approach, and is the way that 
series should be presented. Students studying series from this chapter will gain a unique and 
thorough understanding of the topic. This textbook is one of a very few that teaches what 
conditional convergence means. Chapter 10, Parametric, Vector, and Polar Functions, cov­
ers vectors of two dimensions, and is perfect for students of Calculus BC. This chapter 
teaches exactly what the AP* student is expected to know about vector functions.

Ross Finney has passed away since this new edition was started, but his influence and 
scholarship are still keenly felt in the text. Throughout his life, Ross was always a master 
teacher, but even he was amazed at the insight and brilliance of the team of Dan, Frank, 
and Bert. This new edition is well prepared to take student and teacher on their journey 
through AP* Calculus, and I recommend it with the highest enthusiasm. There is no more 
comfortable, complete conveyance available anywhere.

'B m cd m n

Judy Broadwin taught AP* Calculus at Jericho High School fo r many years. In addition, she was a reader, table 
leader, and eventually BC Exam leader o f the AP* exam. She was a member to the Development Committee fo r  AP* 
Calculus during the years that the AP* course descriptions were undergoing significant change. Judy now teaches 
calculus at Baruch College o f the City o f New York.

*AP is a registered trademark of the College Board, which was not involved in the production of, and does 
not endorse, this product.
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To the Teacher
The main goal of this third edition is to realign the content with the changes in the 
Advanced Placement (AP*) calculus syllabus and the new type of AP* exam questions. We 
have also more carefully connected examples and exercises and updated the data used in 
examples and exercises. Cumulative Quick Quizzes are now provided two or three times 
in each chapter.

The course outlines for AP* Calculus reflect changes in the goals and philosophy of cal­
culus courses now being taught in colleges and universities. The following objectives 
reflect the goals of the curriculum.

• Students should understand the meaning of the derivative in terms of rate of change 
and local linear approximations.

• Students should be able to work with functions represented graphically, numerically, 
analytically, or verbally, and should understand the connections among these repre­
sentations.

• Students should understand the meaning of the definite integral both as a limit of 
Riemann sums and as a net accumulation of a rate of change, and understand the rela­
tionship between the derivative and integral.

• Students should be able to model problem situations with functions, differential equa­
tions, or integrals, and communicate both orally and in written form.

• Students should be able to represent differential equations with slope fields, solve 
separable differential equations analytically, and solve differential equations using 
numerical techniques such as Euler’s method.

• Students should be able to interpret convergence and divergence of series using tech­
nology, and to use technology to help solve problems. They should be able to repre­
sent functions with series and find the Lagrange error bound for Taylor polynomials. 

This revision of Finney/Thomas/Demana/Waits Calculus completely supports the con­
tent, goals, and philosophy of the new advanced placement calculus course description.

Calculus is explored through the interpretation of graphs and tables as well as analytic 
methods (multiple representation of functions). Derivatives are interpreted as rates of 
change and local linear approximation. Local linearity is used throughout the book. The 
definite integral is interpreted as total change over a specific interval and as a limit of 
Riemann sums. Problem situations are modeled with integrals. Chapter 6 focuses on the 
use of differential equations to model problems. We interpret differential equations using 
slope fields and then solve them analytically or numerically. Convergence and divergence 
of series are interpreted graphically and the Lagrange error bound is used to measure the 
accuracy of approximating functions with Taylor polynomials.

The use of technology is integrated throughout the book to provide a balanced approach 
to the teaching and learning of calculus that involves algebraic, numerical, graphical, and 
verbal methods (the rule of four). Students are expected to use a multirepresentational 
approach to investigate and solve problems, to write about their conclusions, and often to 
work in groups to communicate mathematics orally. This book reflects what we have learned 
about the appropriate use of technology in the classroom during the last decade.

The visualizations and technological explorations pioneered by Demana and Waits are 
incorporated throughout the book. A steady focus on the goals of the advanced placement 
calculus curriculum has been skillfully woven into the material by Kennedy, a master high 
school calculus teacher. Suggestions from numerous teachers have helped us shape this 
modern, balanced, technological approach to the teaching and learning of calculus.

*AP is a registered trademark of the College Board, which was not involved in the production of, and does 
not endorse, this product.



CHANGES FOR THIS EDITION
The course descriptions for the two Advanced Placement courses (Calculus AB and 
Calculus BC) have changed over the years to respond to new technology and to new points 
of emphasis in college and university courses. The updated editions of this textbook have 
consistently responded to those changes to make it easier for students and teachers to adjust. 
This latest edition contains significantly enhanced coverage of the following topics:

• Slope fields, now a topic for both AB and BC students, are studied in greater depth 
and are used to visualize differential equations from the beginning.

• Euler’s method, currently a BC topic, is used as a numerical technique (with multiple 
examples) for solving differential equations using the insights gained from slope fields.

• Local linearity, a point of emphasis in previous editions but now more important than 
ever for understanding various applications of the derivative, is now a thread running 
throughout the book.

• More examples and exercises have been added to illustrate the connections between 
the graph of a function and the graph of its derivative (or the graph of f  and a func­
tion defined as an integral of /) .

• The logistic differential equation, a BC topic that is covered weakly in most textbooks 
despite its many applications, now has its own section.

Similarly, the coverage of some other topics has been trimmed to reflect the intent of their 
inclusion in the AP* courses:

• The use of partial fractions for finding antiderivatives has been narrowed to distinct 
linear factors in the denominator and has been more directly linked to the logistic 
differential equation;

• The treatment of vector calculus has been revised to focus on planar motion prob­
lems, which are easily solved using earlier results componentwise;

• The treatment of polar functions has been narrowed to the polar topics in the BC course 
description and has been linked more directly to the treatment of parametric functions.

Moreover, this latest edition continues to explore the ways teachers and students can use 
graphing calculator technology to enhance their understanding of calculus topics.

This edition of the text also includes new features to further assist students in their study 
of calculus:

• What You’ll Learn About... and Why introduces the big ideas in each section and 
explains their purpose.

• At the end of each example students are encouraged to Now Try a related exercise at 
the end of the section to check their comprehension.

• A Quick Quiz for AP* Preparation appears every few sections, requiring students to 
answer questions about topics covered in multiple sections, to assist them in obtaining 
a conceptual understanding of the material.

• Each exercise set includes a group of Standardized Test Questions. Additionally, an 
AP* Examination Preparation appears at the end of each set of chapter review 
exercises.

For further information about new and continuing features, please consult the To the 
Student material.

x ii To the Teacher



CONTINUING FEATURES
Balanced Approach
A principal feature of this edition is the balance attained among the rule of four: 
analytic/algebraic, numerical, graphical, and verbal methods of representing problems. We 
believe that students must value all of these methods of representation, understand how 
they are connected in a given problem, and learn how to choose the one(s) most appropri­
ate for solving a particular problem.

The Rule of Four
In support of the rule of four, we use a variety of techniques to solve problems. For 
instance, we obtain solutions algebraically or analytically, support our results graphically 
or numerically with technology, and then interpret the result in the original problem con­
text. We have written exercises where students are asked to solve problems by one 
method and then support or confirm their solutions by using another method. We want 
students to understand that technology can be used to support (but not prove) results, and 
that algebraic or analytic techniques are needed to prove results. We want students to 
understand that mathematics provides the foundation that allows us to use technology to 
solve problems.

Applications
The text includes a rich array of interesting applications from biology, business, chem­
istry, economics, engineering, finance, physics, the social sciences, and statistics. Some 
applications are based on real data from cited sources. Students are exposed to func­
tions as mechanisms for modeling data and learn about how various functions can 
model real-life problems. They learn to analyze and model data, represent data graphi­
cally, interpret from graphs, and fit curves. Additionally, the tabular representations of 
data presented in the text highlight the concept that a function is a correspondence 
between numerical variables, helping students to build the connection between the 
numbers and the graphs.

Explorations
Students are expected to be actively involved in understanding calculus concepts and solv­
ing problems. Often the explorations provide a guided investigation of a concept. The 
explorations help build problem-solving ability by guiding students to develop a mathe­
matical model of a problem, solve the mathematical model, support or confirm the solu­
tion, and interpret the solution. The ability to communicate their understanding is just as 
important to the learning process as reading or studying, not only in mathematics but in 
every academic pursuit. Students can gain an entirely new perspective on their knowledge 
when they explain what they know in writing.

Graphing Utilities
The book assumes familiarity with a graphing utility that will produce the graph of a 
function within an arbitrary viewing window, find the zeros of a function, compute the 
derivative of a function numerically, and compute definite integrals numerically. 
Students are expected to recognize that a given graph is reasonable, identify all the 
important characteristics of a graph, interpret those characteristics, and confirm them 
using analytic methods. Toward that end, most graphs appearing in this book resemble 
students’ actual grapher output or suggest hand-drawn sketches. This is one of the first 
calculus textbooks to take full advantage of graphing calculators, philosophically 
restructuring the course to teach new things in new ways to achieve new understanding, 
while (courageously) abandoning some old things and old ways that are no longer serv­
ing a purpose.

To the Teacher x i i i



Exercise Sets
The exercise sets were revised extensively for this edition, including many new ones. 
There are nearly 4,000 exercises, with more than 80 Quick Quiz exercises and 560 Quick 
Review exercises. The different types of exercises included are:

Algebraic and analytic manipulation 

Interpretation of graphs 

Graphical representations 

Numerical representations 

Explorations 

Writing to learn 

Group activities 

Data analyses

Descriptively titled applications 

Extending the ideas

Each exercise set begins with the Quick Review feature, which can be used to introduce 
lessons, support Examples, and review prerequisite skills. The exercises that follow are 
graded from routine to challenging. An additional block of exercises, Extending the Ideas, 
may be used in a variety of ways, including group work. We also provide Review Exercises 
and AP* Examination Preparation at the end of each chapter.

SUPPLEMENTS AND RESOURCES 
For the Student
Student Edition, ISBN 0-13-201408-4  
Preparing for the Calculus AP* Exam, ISBN 0-321-33574-0
• Introduction to the AP* AB and BC Calculus Exams

• Precalculus Review of Calculus Prerequisites

• Review of AP* Calculus AB and Calculus BC Topics

• Practice Exams

• Answers and Solutions

Student Practice Workbook, ISBN 0-13-201411-4
• New examples that parallel key examples from each section in the book are provided 

along with a detailed solution

• Related practice problems follow each example

Texas Instruments Graphing Calculator Manual, ISBN 0-13-201415-7
• An introduction to Texas Instruments’ graphing calculators, as they are used for 

calculus

• Features the TI-84 Plus Silver Edition, the TI-86, and the TI-89 Titanium. The key­
strokes, menus and screens for the TI-83 Plus, TI-83 Plus Silver Edition, and the 
TI-84 Plus are similar to the TI-84 Plus Silver Edition and the TI-89, TI-92 Plus, and 
Voyage™ 200 are similar to the TI-89 Titanium.

For the Teacher
Annotated Teacher Edition, ISBN 0-13-201409-2
• Answers included on the same page as the problem appears, for most exercises



• Solutions to Chapter Opening Problems, Teaching Notes, Common Errors, Notes on 
Examples and Exploration Extensions, and Assignment Guide included at the begin­
ning of the book.

Teacher's AP* Correlations and Preparation Guide, 0-13-201413-0
• Calculus AB/BC topic correlations, Pacing Guides for AB/BC, Assignment Guides, 

Concepts Worksheets, Group Activity Explorations, Sample Tests, and Answers

Assessment Resources, 0-13-201412-2
• Chapter quizzes, chapter tests, semester tests, final tests, and alternate assessments, 

along with all answers

Solutions Manual, ISBN 0-13-201414-9
• Complete solutions for Quick Reviews, Exercises, Explorations, and Chapter Reviews

Transparencies, ISBN 0-13-201410-6
• Full color transparencies for key figures from the text

Technology Resources

MathXL® www.mathxl.com
MathXL® is a powerful online homework, tutorial, and assessment system that accompa­
nies our textbooks in mathematics or statistics. With MathXL, instructors can create, edit, 
and assign online homework and tests using algorithmically generated exercises correlat­
ed at the objective level to the textbook. They can also create and assign their own online 
exercises and import TestGen tests for added flexibility. All student work is tracked in 
MathXL’s online gradebook. Students can take chapter tests in MathXL and receive per­
sonalized study plans based on their test results. The study plan diagnoses weaknesses and 
links students directly to tutorial exercises for the objectives they need to study and retest. 
Students can also access supplemental animations and video clips directly from selected 
exercises. For more information, visit our Web site at www.mathxl.com, or contact your 
local sales representative.

InterAct Math Tutorial Web site, www.interactmath.com
Get practice and tutorial help online! This interactive tutorial Web site provides algorith­
mically generated practice exercises that correlate directly to the exercises in the textbook. 
Students can retry an exercise as many times as they like with new values each time for 
unlimited practice and mastery. Every exercise is accompanied by an interactive guided 
solution that provides helpful feedback for incorrect answers, and students can also view 
a worked-out sample problem that steps them through an exercise similar to the one they're 
working on.

Video Lectures on CD, ISBN 0 -13-2030709-5
The video lectures feature engaging mathematics instructors who present comprehensive 
coverage of the core topics of the text. The presentations include examples and exercises 
from the text and support an approach that emphasizes visualization and problem-solving.

TestGen®, ISBN 0-13-201419-X
TestGen® enables instructors to build, edit, print, and administer tests using a computer­
ized bank of questions developed to cover all the objectives of the text. TestGen is algo­
rithmically based, allowing instructors to create multiple but equivalent versions of the 
same question or test with the click of a button. Instructors can also modify test questions 
or add new questions by using the built-in question editor, which allows users to create
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graphs, import graphics, and insert math notation, variable numbers, or text. Tests can be 
printed or administered online via the Internet or another network. TestGen comes pack­
aged with QuizMaster, which allows students to take tests on a local area network. The 
software is available on a dual-platform Windows/Macintosh CD-ROM.

Presentation Express CD-ROM, ISBN 0-13-201420-3
This time saving component includes all the transparencies in PowerPoint format as 
well as section-by-section lecture notes for the entire book, making it easier for you to 
teach and to customize based on your teaching preferences. All slides can be cus­
tomized and edited.

Teacher Express CD-ROM (with LessonView), ISBN 0-13-201422-X
Plan -  Teach -  Assess. TeacherEXPRESS is a new suite of instructional tools on CD-ROM 
to help teachers plan, teach, and assess at the click of a mouse. Powerful lesson planning, 
resource management, testing, and an interactive teacher’s edition all in one place make 
class preparation quick and easy! Contents: Planning Express, Teacher’s Edition, Program 
Teaching Resources, Correlations, and Links to Other Resources.

Student Express CD-ROM, ISBN 0-13-201421-1
An interactive textbook on CD-ROM makes this the perfect student tool for studying or 
test review.

Technology Resource Manual: Casio and HP Calculators
Available for download from the PHSchool.com Web site (http://www.phschool.com/). 
Enter the code aze-0002 in the Web Codes box in the upper-left comer of the home page. 
Please note the Web Code is case sensitive.

To the AP* Student
We know that as you study for your AP* course, you’re preparing along the way for the 
AP* exam. By tying the material in this book directly to AP* course goals and exam top­
ics, we help you to focus your time most efficiently. And that’s a good thing!

The AP* exam is an important milestone in your education. A high score will position 
you optimally for college acceptance— and possibly will give you college credits that put 
you a step ahead. Our primary commitment is to provide you with the tools you need to 
excel on the exam ... the rest is up to you!

Test-Taking Strategies for an Advanced Placement* 
Calculus Examination
You should approach the AP* Calculus Examination the same way you would any major 
test in your academic career. Just remember that it is a one-shot deal— you should be at 
your peak performance level on the day of the test. For that reason you should do every­
thing that your “coach” tells you to do. In most cases your coach is your classroom teacher. 
It is very likely that your teacher has some experience, based on workshop information or 
previous students’ performance, to share with you.

You should also analyze your own test-taking abilities. At this stage in your education, 
you probably know your strengths and weaknesses in test-taking situations. You may be 
very good at multiple choice questions but weaker in essays, or perhaps it is the other way 
around. Whatever your particular abilities are, evaluate them and respond accordingly. 
Spend more time on your weaker points. In other words, rather than spending time in your 
comfort zone where you need less work, try to improve your soft spots. In all cases, con­
centrate on clear communication of your strategies, techniques, and conclusions.
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The following table presents some ideas in a quick and easy form.

General Strategies for AP* Examination Preparation

Time
Through the Year

The Week Before

The Night Before

Exam Day

Exam Night

Dos
• Register with your teacher/coordinator
• Pay your fee (if applicable) on time
• Take good notes
• Work with others in study groups
• Review on a regular basis
• Evaluate your test-taking strengths and weaknesses— 

keep track of how successful you are when guessing
• Combine independent and group review
• Get tips from your teacher
• Do lots of mixed review problems
• Check your exam date, time, and location
• Review the appropriate AP* Calculus syllabus (AB or BC)
• Put new batteries in your calculator
• Make sure your calculator is on the approved list
• Lay out your clothes and supplies so that you are ready to 

go out the door
• Do a short review
• Go to bed at a reasonable hour
• Get up a little earlier than usual
• Eat a good breakfast/lunch
• Put some hard candy in your pocket in case you need an 

energy boost during the test
• Get to your exam location 15 minutes early
• Relax-you earned it

Topics from the Advanced Placement* 
Curriculum for Calculus AB, Calculus BC
As an AP* Student, you are probably well aware of the good study habits that are needed 
to be a successful student in high school and college:

• attend all the classes

• ask questions (either during class or after)

• take clear and understandable notes

• make sure you understand the concepts rather than memorizing formulas

• do your homework; extend your test-prep time over several days or weeks, instead of 
cramming

• use all the resources— text and people— that are available to you.

No doubt this list of “good study habits” is one that you have seen or heard before. You 
should know that there is powerful research that suggests a few habits or routines will 
enable you to go beyond “knowing about” calculus, to more deeply “understanding” cal­
culus. Here are three concrete actions for you to consider:

• Review your notes at least once a week and rewrite them in summary form.

• Verbally explain concepts (theorems, etc.) to a classmate.
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• Form a study group that meets regularly to do homework and discuss reading and lec­
ture notes.

Most of these tips boil down to one mantra, which all mathematicians believe in:

Math is not a spectator sport.

The AP* Calculus Examination is based on the following Topic Outline. For your con­
venience, we have noted all Calculus AB and Calculus BC objectives with clear indica­
tions of topics required only by the Calculus BC Exam. The outline cross-references each 
AP* Calculus objective with the appropriate section(s) of this textbook: Calculus: 
Graphical, Numerical, Algebraic, Third Edition, by Finney, Demana, Waits, and Kennedy.

Use this outline to track your progress through the AP* exam topics. Be sure to cover 
every topic associated with the exam you are taking. Check it off when you have studied 
and/or reviewed the topic.

Even as you prepare for your exam, I hope this book helps you map— and enjoy— your 
calculus journey!

—{John U rnnstiyg  

Hinsdale Central High School

Topic Outline for AP* Calculus AB and AP* Calculus BC
(excerpted from  the College Board's Course D escrip tion - Calculus: Calculus AB, Calculus BC, May 20 0 7 )

L____________ Calculus Exam________ Functions, Graphs, and Limits____________________________________ Calculus

A AB BC Analysis of graphs 1.2—1.6
B AB BC Limits of functions (including one-sided limits)

B1 AB BC An intuitive understanding of the limiting process 2.1, 2.2
B2 AB BC Calculating limits using algebra 2.1, 2.2
B3 AB BC Estimating limits from graphs or tables of data 2.1, 2.2

C AB BC Asymptotic and unbounded behavior
C1 AB BC Understanding asymptotes in terms of graphical behavior 2.2
C2 AB BC Describing asymptotic behavior in terms of limits involving infinity 2.2
C3 AB BC Comparing relative magnitudes of functions and their rates of change 2.2, 2.4, 8.3

D AB BC Continuity as a property of functions
D1 AB BC An intuitive understanding of continuity 2.3
D2 AB BC Understanding continuity in terms of limits 2.3
D3 AB BC Geometric understanding of graphs of continuous functions 2.3, 4.1-4.3

E BC Parametric, polar, and vector functions 10.1 10.3

II. Calculus Exam Derivatives Calculus

A AB BC Concept of the derivative
A1 AB BC Derivative presented graphically, numerically, and analytically 2.4-4.5
A2 AB BC Derivative interpreted as an instantaneous rate of change 2.4
A3 AB BC Derivative defined as the limit of the difference quotient 2.4-3.1
A4 AB BC Relationship between differentiability and continuity 3.2

B AB BC Derivative at a point
B1 AB BC Slope of a curve at a point 2.4
B2 AB BC Tangent line to a curve at a point and local linear approximation 2.4, 4.5
B3 AB BC Instantaneous rate of change as the lim it of average rate of change 2.4, 3.4
B4 AB BC Approximate rate of change from graphs and tables of values 2.4, 3.4

C AB BC Derivative as a function
C1 AB BC Corresponding characteristics of graphs of /  and / ' 3.1, 4.3
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C2 AB BC Relationship between the increasing and decreasing behavior of /
and the sign of f 4.1, 4.3

C3 AB BC The Mean Value Theorem and its geometric consequences. 4.2
C4 AB BC Equations involving derivatives. Verbal descriptions are translated 3.4, 3.5,

into equations involving derivatives and vice versa 4.6, 6.4, 6.5
AB BC Second Derivatives

D1 AB BC Corresponding characteristics of graphs of f, f  and f" 4.3
D2 AB BC Relationship between the concavity of /  and the sign o f / " 4.3
D3 AB BC Points of inflection as places where concavity changes 4.3

AB BC Applications of derivatives
E1 AB BC Analysis of curves, including the notions of monotonicity and concavity 4.1-4.3
E2 BC Analysis of planar curves given in parametric form, polar form, and

vector form, including velocity and acceleration vectors 10.1-10.3
E3 AB BC Optimization, both absolute (global) and relative (local) extrema 4.3, 4.4
E4 AB BC Modeling rates of change, including related rates problems 4.6
E5 AB BC Use of implicit differentiation to find the derivative of an inverse function 3.7
E6 AB BC Interpretation of the derivative as a rate of change in varied applied

contexts, including velocity, speed, and acceleration 3.4
E7 AB BC Geometric interpretation of differential equations via slope fields and

the relationship between slope fields and solution curves for differential
equations 6.1

E8 BC Numerical solution of differential equations using Euler's method 6.1
E9 BC L'Hopital's Rule, including its use in determining limits and convergence

of improper integrals and series 8.1, 9.5
AB BC Computation of derivatives

F1 AB BC Knowledge of derivatives of basic functions, including power.
exponential, logarithmic, trigonometric, and inverse trigonometric 3.3, 3.5,
functions 3.8, 3.9

F2 AB BC Basic rules for the derivative of sums, products, and quotients of functions 3.3
F3 AB BC Chain rule and implicit differentiation 3.6, 3.7
F4 BC Derivatives of parametric, polar, and vector functions 10.1-10.3

# Calculus Exam Integrals Calculus

Interpretations and properties of definite integrals
A1 AB BC Definite integral as a lim it of Riemann sums 5.1, 5.2
A2 AB BC Definite integral of the rate of change of a quantity over an interval

interpreted as the change of the quantity over the closed interval
[a,b] of \f'{x)dx = f(b) -  f{a) 5.1, 5.4

A3 AB BC Basic properties of definite integrals (Examples include additivity
and linearity.) 5.2 - 5.3
Applications of integrals

B1a AB BC Appropriate integrals are used in a variety of applications to model
physical, biological, or economic situations. ... students should be able
to adapt their knowledge and techniques. Emphasis is on using the
method of setting up an approximating Riemann sum and representing
its lim it as a definite integral.... specific applications should include
using the integral of a rate of change to give accumulated change,
finding the area of a region, the volume of a solid with known cross 5.4, 5.5,
sections, the average value of a function, and the distance traveled by 6.4, 6.5,
a particle along a line 7.1-7.5

B1b BC Appropriate integrals are used ... specific applications should include
... finding the area of a region bounded by polar curves ... and the length 7.4,
of a curve (including a curve given in parametric form) 10.1, 10.3
Fundamental Theorem of Calculus

C1 AB BC Use of the Fundamental Theorem to evaluate definite integrals 5.4
C2 AB BC Use of the Fundamental Theorem to represent a particular antiderivative,

and the analytical and graphical analysis of functions so derived 5.4, 6.1
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Techniques of antidifferentiation
D1 AB BC Antiderivatives following directly from derivatives of basic functions 4.2, 6.1, 6.2
D2a AB BC Antiderivatives by substitution of variables (including change of limits

for definite integrals) 6.2
D2b BC Antiderivatives by ... parts, and simple partial fractions (nonrepeating

linear factors only) 6.3, 6.5
D3 BC Improper integrals (as limits of definite integrals) 8.3

Applications of antidifferrentiation
E1 AB BC Finding specific antiderivatives using initial conditions, including

applications to motion along a line 6.1, 7.1
E2 AB BC Solving separable differential equations and using them in modeling

In particular, studying the equations y ' = ky and exponential growth 6.4
E3 BC Solving logistic differential equations and using them in modeling 6.5

Numerical approximations to definite integrals
F1 AB BC Use of Riemann and trapezoidal sums to approximate definite integrals of

functions represented algebraically, graphically, and by tables of values 5.2, 5.5

Calculus Exam Polynomial Approximations and Series Calculus

Concept of series
A1 BC A series is defined as a sequence of partial sums, and convergence is

defined in terms of the lim it of the sequence of partial sums. Technology
can be used to explore convergence or divergence 9.1
Series of constants

B1 BC Motivating examples, including decimal expansion 9.1
B2 BC Geometric series with applications 9.1
B3 BC The harmonic series 9.5
B4 BC Alternating series with error bound 9.5
B5 BC Terms of series as areas of rectangles and their relationship to

improper integrals, including the integral test and its use in testing
the convergence of p-series 9.5

B6 BC The ratio test for convergence or divergence 9.4
B7 BC Comparing series to test for convergence and divergence 9.4

Taylor series
C1 BC Taylor polynomial approximation with graphical demonstration of

convergence (For example, viewing graphs of various Taylor polynomials
of the sine function approximating the sine curve.) 9.2

C2 BC Maclaurin series and the general Taylor series centered at x = a 9.2
C3 BC Maclaurin series for the functions ex, sin x, cos x, and 1/(1 -  x) 9.2
C4 BC Formal manipulation of Taylor series and shortcuts to computing

Taylor series, including substitution, differentiation, antidifferentiation,
and the formation of new series from known series 9.1, 9.2

C5 BC Functions defined by power series 9.1, 9.2
C6 BC Radius and interval of convergence of power series 9.1, 9.4, 9.5
C7 BC Lagrange error bound for Taylor polynomials 9.3
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Using the Book for Maximum Effectiveness
So, how can this book help you to join in the game of mathematics for a winning future? 
Let us show you some unique tools that we have included in the text to help prepare you
not only for the AP* Calculus exam, but also for success beyond this course.

Chapter Openers provide a motivating photograph and application 
to show you an example that illustrates the relevance of what you’ll 
be learning in the chapter.

A Chapter Overview then follows to give you a sense of what you 
are going to learn. This overview provides a roadmap of the chapter 
as well as tells how the different topics in the chapter are connected
under one big idea. It is always helpful to remember that mathemat­
ics isn’t modular, but interconnected, and that the different skills 
you are learning throughout the course build on one another to help 
you understand more complex concepts.

C h a p ter  6 O v er v iew

One of the early accomplishments of calculus was predicting the future position of a 
planet from its present position and velocity. Today this is just one of a number of occa­
sions on which we deduce everything we need to know about a function from one of its 
known values and its rate of change. From this kind of information, we can tell how long a 
sample of radioactive polonium will last; whether, given current trends, a population will 
grow or become extinct; and how large major league baseball salaries are likely to be in 
the year 2010. In this chapter, we examine the analytic, graphical, and numerical tech­
niques on which such predictions are based.

______
What you'll learn about

• Differential Equations

• Slope Reids

• Euler's Method 

. . . and why

Differential equations have always 
been a prime motivation for the 
study of calculus and remain so 
to this day.

D ifferential E quation  Mode

If your calculator has a differential 
equation mode for graphing, it is 
intended for graphing slope fields. The 
usual “Y = " turns into a "dy/dx = "  
screen, and you can enter a function of 
x and/or y. The grapher draws a slope 
field for the differential equation when 
you press the GRAPH button.

Similarly, the What you’ll learn about...and why feature gives you the big ideas in 
each section and explains their purpose. You should read this as you begin the section 
and always review it after you have completed the section to make sure you under­
stand all of the key topics that you have just studied.

Margin Notes appear throughout the book on various topics. Some notes provide 
more information on a key concept or an example. Other notes offer practical advice 
on using your graphing calculator to obtain the 
most accurate results.

Brief Historical Notes present the stories of 
people and the research that they have done to 
advance the study of mathematics. Reading these 
notes will often provide you with additional 
insight for solving problems that you can use 
later when doing the homework or completing 
the AP* Exam.

GltanleA. Hicha/uH
______________________  (1904-1950)

Millions of people are 
alive today because 
of Charles Drew's 
pioneering work on 
blood plasma and the 
preservation of human 
blood for transfusion. 
After directing the Red 

Cross program that collected plasma 
for the Armed Forces in World War II,
Dr. Drew went on to become Head of 
Surgery at Howard University and Chief 
of Staff at Freedmen's Hospital in 
Washington, D.C.

D ifferential E quations 
and  M athem atical 
M odeling

One way to measure how light in the ocean di­
minishes as water depth increases involves 
using a Secchi disk. This white disk is 30 

centimeters in diameter, and is lowered into the 
ocean until it disappears from view. The depth of this 
point (in meters), divided into 1.7, yields the coeffi­
cient k  used in the equation lx =  l0e~la. This equation 
estimates the intensity lx of light at depth x  using l0, 
the intensity of light at the surface.

In an ocean experiment, if the Secchi disk disap­
pears at 55 meters, at what depth will only 1% of 
surface radiation remain? Section 6.4 will help you 
answer this question.
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'cling and Optimization 221

"jj "T Examples from Business and Industry

t :

Figure 4.38 An open box made by cui 

(Example 3)

= 3.6811856 Y = 830.53819

To optimize somelhing means lo maximize or minimize some aspecl of ii. What is (he sizi 
of (he mos( profitable production run? What is (he leas( expensive shape for an oil can' 
Wha( is (he s(iffes( rectangular beam we can eu( from a 12-inch log? We usually answe 
such questions by finding (he greatest or smallest value of some function that vvc havi

EXAMPLE 3 Fabricating a Box
An open-top box is to be made by cutting congruent squares of side length v from the cor­
ners of a 20- by 25-inch sheet of tin and bending up the sides (Figure 4.38). How large 
should the squares be to make the box hold as much as possible? What is the resulting

re (20 -  2.t) and
; of the t

Solve Graphically B £ 10. Figure 4.39
v(20 -  2.0(25 -  Zx).
■mol exceed 20. we have 
V is about 820.53 and oc

Confirm Analytically Expanding, we obtain V(x) = 4x:'  -  9ttt2 + 50Qr. The first 
derivative of V is

V'(r) = I2.t2 -  I8ftt + 500.

The tw 5 of the quadratic equation V’{x) = 0 are 
1 8 0 -Vl802 - 48(500)

Many examples include solutions to Solve Algebraically, Solve 
Graphically, or Solve Numerically. You should be able to use different 
approaches for finding solutions to problems. For instance, you would obtain 
a solution algebraically when that is the most appropriate technique to use, 
and you would obtain solutions graphically or numerically when algebra is 
difficult or impossible to use. We urge you to solve problems by one 
method, then support or confirm your solution by using another method, and 
finally, interpret the results in the context of the problem. Doing so rein­
forces the idea that to understand a problem fully, you need to understand it 
algebraically, graphically, and numerically whenever possible.

Each example ends with a suggestion to Now Try a related exercise. Working 
the suggested exercise is an easy way for you to check your comprehension 
of the material while reading each section, instead of waiting until the end of 
each section or chapter to see if you “got it.” True comprehension of the text­
book is essential for your success on the AP* Exam.

Endpoint values:
V(c,) = 820.53 
V(0) = 0. V(I0) =

Constructing Cones

A cone of height h and radius r  is constructed from a flat, circular disk of radius 4 in. by 
removing a sector AOC of arc length x  in. and then connecting the edges OA and OC. 
What arc length .r will produce the cone of maximum volume, and what is that volume?

Explorations appear throughout 
the text and provide you with the 
perfect opportunity to become an 

active learner and discover mathematics on 
your own. Honing your critical thinking and 
problem-solving skills will ultimately benefit 
you on all of your AP* Exams.

Each exercise set begins with a Quick 
Review to help you review skills needed in 
the exercise set, reminding you again that 
mathematics is not modular. Each Quick 
Review includes section references to show
where these skills were covered earlier in the text. If you find these problems overly 
challenging, you should go back through the book and your notes to review the material 
covered in previous chapters. Remember, you need to understand the material from the 
entire calculus course for the AP* Calculus Exam, not just memorize the concepts from 
the last part of the course.

2. Show that the natural domain of V is 0  £  x  £  16jt. Graph V over this domain.
3. Explain why the restriction 0 ^  x  £  8ir makes sense in the problem situation. 

Graph V over this domain.
4. Use graphical methods to find where the cone has its maximum volume, and 

what thal volume is.
5. Confirm your findings in part 4 analytically. [Hint: Use V(.t) =  (1/3)-jtr-h. 

h2 +  r-  = 16, and the Chain Rule.]

S tandardized  Test Q uestions
> jP fpf You may use a graphing calculator to solve the following 1
\ problems.

61. True or False There is exactly one point in the plane with
polar coordinates (2, 2). Justify your answer.

62. True or False The total an:a  enclosed by the 3-petaled rose

r  =  sin 38  is f 0 \  sin2 3Odd. Justify your answer.

i 63. M ultiple Choice The area o f  the region enclosed by the polar i

graph of r  =  V 3  +  cos 8  is ;given by which integral?

(A) / Q2” V3 +  cos 8 dd (B) J" V3 + cos 6 dd

(C) 2 + cosfl) dd (D) f ° ( 3  +  cos 6) dO

(E) f o V 3  +  cos 8 dd

64. M ultiple Choice The area enclosed by one petal o f the
: 3-petaled rose r  =  4  cos(30):is given by which integral?

(A) 16J  V jCos(36 )d 0 (B) 8/ _ ’̂ 6 cos(30) dd

(C) 8 f  ^ cos2(30) dd (D) 1 6 /  ^ 6 cos2(30) dO

(E) 8 cos2(30) dd

Q u ick  R e v ie w  6.3 (For help, go to Sections 3.8 and 3.9.)

In Exercises 1-4, find dy/dx.

1. y  = x* sin 2x 2. y  =  e 2x In (3* + 1)

3. y = tan-1 2x 4. y  = sin-1 (jc +  3)

In Exercises 5 and 6, solve for x  in terms of y.

5. y  =  tan-1 3x 6. y = cos-1 (x +  1)

7. Find the area under the arch of the curve y  = sin t t x  from x  = 0
to x  =  1.

8. Solve the differential equation dy/dx =  e 2x.

9. Solve the initial value problem dy/dx =  x  +  sin x, j(0 ) 

10. Use differentiation to confirm the integration formula

J e x sin x d x  = ~^ex (sin x  — cos x).

Along with the standard types of exercises, including skill-based, application, 
writing, exploration, and extension questions, each exercise set includes a group of 
Standardized Test Questions. Each group includes two true-false with justifications 
and four multiple-choice questions, with instructions about the permitted use of your 
graphing calculator.
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C hapter 7 Key Terms
rc length (p. 413) 
rca between curves (p. 390) 

Cavalieri's theorems (p. 401) 
center of mass (p. 389) 
constant-force formula (p. 384) 
cylindrical shells (p. 402) 
displacement (p. 380) 
fluid force (p. 421) 
fluid pressure (p. 421) 
xit-pound (p. 384)
>rce constant (p. 385) 
laussian curve (p. 423)

Hooke’s Law (p. 385) 
inflation rate (p. 388) 
joule (p. 384) 
length of a curve (p. 4 13) 
mean (p. 423) 
moment (p. 389) 
net change (p. 379) 
newton (p. 384) 
normal curve (p. 423) 
normal pdf (p. 423) 
probability density function 
68-95-99.7 rule (p. 423)

smooth curve (p. 413) 
smooth function (p. 413) 
solid of revolution (p. 400) 
standard deviation (p. 423) 
surface area (p. 405)

universal gravitational constant (p. 428) 
volume by cylindrical shells (p. 402) 
volume by slicing (p. 400) 
volume of a solid (p. 399) 
weight-density (p. 421) 
work (p. 384)

C hapter 7 Review Exercises

The collection I could be

In Exercises 1-5, the application involves the accumulatior 
changes over an interval to give the net change over that en 
val. Set up an integral to model the accumulation and evalu 

:r the question.
1. A toy car slides down a ramp and coasts to a stop aftc 

sec. Its velocity from / = 0 to r = 5 is modeled b 
(/) = I2 -  0.21* ft/sec. How far docs it travel?

2. The fuel consumption of a diesel motor between weekly 
maintenance periods is modeled by the function c(i) =
4 + 0.001/4 gal/day. 0 S I £  7. How many gallons docs 
it consume in a week?

3. The number of billboards per mile along a 100-mile stretch of an 
interstate highway approaching a certain city is modeled by the 
function B(x) = 21 -  e001\  where x  is the distance from the city 
in miles. About how many billboards are along that stretch of 
highway?

Each chapter concludes with a list of Key Terms, with references back to 
where they are covered in the chapter, as well as Chapter Review 
Exercises to check your comprehension of the chapter material.

The Quick Quiz for AP* Preparation provides another opportunity to 
review your understanding as you progress through each chapter. A quiz 
appears after every two or three sections and asks you to answer questions 
about topics covered in those sections. Each quiz contains three multiple- 
choice questions and one free-response question of the AP* type. This con­
tinual reinforcement of ideas steers you away from rote memorization and 
toward the conceptual understanding needed for the AP* Calculus Exam.

AP* Examination Preparation
may use a graphing calculator to solve the following 

problems.
53. Let R be the region in the first quadrant enclosed by the y-axis 

and the graphs of y  = 2 + sin x and y = sec*.
a) Find th ea of R.

(b) Find the volume of the solid generated when R is revolved 
about the jr-axis.
(c) Find the volume of the solid whose base is R and whose cross 
sections cut by planes perpendicular to the i-axis are squares.

54. The temperature outside a house during a 24-hour period is given by 

F(») = 80 -  lOoK^jyj, 0 £  I £  24, 

where F(t) is measured in degrees Fahrenheit and i is measured

(a)
= 14.

:st degree Fahrcn-

(b) An air conditioner coolcd the house whenever the outside 
temperature was at or above 78 degrees Fahrenheit. For what 
values of t was the air cor "
(c) The cost of cooling th>
$0.05 per hour for each degree the outside tcmperatu 
78 degrees Fahrenheit. What was the total cost, to the 
cent, to cool the house for this 24-hour period?

55. The rate at which people enter an amusement park or 
day is modeled by the function E defined by 

15600

The:
“ -̂ -1**160 

•ate at which people leave the same amusement park or 
day is modeled by the function I. defined by 

m —
I2 -  38f + 370'

Both £(/) and Uf) are measured in people per hour, and time I is 
measured in hours after midnight. These functions are valid lor

I = 9, there are no people in the park.
(a) How many people have entered the park by 5:00 p.m.
(f = 17)? Round your answer to the nearest whole number.
(b) The price of admission to the park is S15 until 5:00 P.M.
(/ = 17). After 5:00 P.M.. the price of admission to the park is SI I. 
How many dollars are collected from admissions to the park on

(c) Let H(t) = /,'(£(*) -  Ux))dx for 9 s  i £  23. The value of 
H( 17) to the nearest whole number is 3725. Find the value of 
H'( 17) and explain the meaning of W( 17) and H'( 17) in the con-

Q u ic k  Q u iz  for  AP* P re p a r a tio n : S e c t io n s  4 .1 -4 .3

jjjjgpj You should solve these problems without using a graphing

1. Multiple Choice How many critical points docs the function 
f(x) = (jc — 2)s (x + 3)4 have?
(A) One (B) Two (C) Three (D) Five (E)Nine

2. Multiple Choice For what value of x  does the function

at x = - 3  and a relative maximum

(A)- (B )~ j  (C) — ■ (D )j ( E ) j
differentiable function such that 
s x, and iff'(x) = (x2 -  9)g(.t), which

3. Multiple Choice Ifs
S<x) < 0 for all real numbers x 
of the following is true?
(A)/  has a relative maximum

(C)/  has relative minima at x  =  - 3  and at x  = 3.
(D)/ has relative maxima at a: = -  3 and at -t = 3.
(E) It cannot be determined if /  has any relative extrema.

I. Free Response Let/  be the function given by 
fix )  = 3 In (x2 + 2) -  2x with domain [-2.4|.
(a) Find the coordinate of each relative maximum point and each

(b) Find the .t-coordinatc of each point of inflection of the graph 
off.
c) Find the absolute m; i value off(x).

lie park.
£ 23. di sthem

An AP* Examination 
Preparation section appears 
at the end of each set of 
chapter review exercises and 
includes three free-response 
questions of the AP* type.
This set of questions, which also may or may not permit the use of your graphing cal­
culator, gives you additional opportunity to practice skills and problem-solving tech­
niques needed for the AP* Calculus Exam.

Calculus at Work features 
individuals who are using 
calculus in their jobs, provid­
ing you with some insight as 
to when you will use calculus 
in your careers. Some of the 
applications of calculus they 
encounter are mentioned 
throughout the text.

Calculus at Work
I am working toward becoming an 
archeaoastronomer and ethnoastronomer 
of Africa. I have a Bachelor's degree in 
Physics, a Master's degree in Astronomy, 
and a Ph.D. in Astronomy and Astro­
physics. From 1988 to 19901 was a mem­
ber of the Peace Corps, and I taught 
mathematics to high school students in 
the Fiji Islands. Calculus is a required 
course in high schools there.
For my Ph.D. dissertation. I investigated 
the possibility of the birthrate of stars 
being related to the composition of star 
formation clouds. I collected data on the 
absorption of electromagnetic emissions 
emanating from these regions. The inten- 

graphed versus wave­

length produces a flat curve with down­
ward spikes at the characteristic wave­
lengths of the elements present. An esti­
mate of the area between a spike and the 
flat curve results in a concentration in 
molecules/cm3 of an element. This area is 
the difference in the integrals of the flat 
and spike curves. In particular, I was look­
ing for a large concentration of water-ice, 
which increases the probability of planets 
forming in a region.
Currently, I am applying for two research 
grants. One will allow me to use the NASA 
infrared telescope on Mauna Kea to 
search for C3S2 in comets. The other will 
help me study the history of astronomy in 
Tunisia.

Jw U ^i HolbvooV
Los Angeles, CA

In addition to this text, Preparing fo r  the A P * Calculus AB or BC Examinations, written 
by experienced AP* teachers, is also available to help you prepare for the AP* Calculus 
Exam. What does it include?

• Text-specific correlations between key AP* test topics and Calculus: Graphical, 
Numerical, Algebraic

• Reinforcement of the important connections between what you’ll learn and what 
you’ll be tested on in May

2 full sample AB exams & 2 sample BC exams including answers and explanation 

Test Taking strategies

You can order Preparing fo r  the A P * Calculus AB or BC Examinations by going online to 
PHSchool.com/catalog or calling 1-800-848-9500 and requesting ISBN 0-321-33574-0.

To the AP* Student x x i i i
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Chapter 1 Prerequisites 
for Calculus

Exponential functions are used to model 
situations in which growth or decay change 
dramatically. Such situations are found in 

nuclear power plants, which contain rods of 
plutonium-239; an extremely toxic radioactive 
isotope.

Operating at full capacity for one year, a 1,000 
megawatt power plant discharges about 435 lb of 
plutonium-239. With a half-life of 24,400 years, 
how much of the isotope will remain after 1,000 
years? This question can be answered with the 
mathematics covered in Section 1.3.
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C hapter 1 O v erv iew

This chapter reviews the most important things you need to know to start learning calcu­
lus. It also introduces the use of a graphing utility as a tool to investigate mathematical 
ideas, to support analytic work, and to solve problems with numerical and graphical meth­
ods. The emphasis is on functions and graphs, the main building blocks of calculus.

Functions and parametric equations are the major tools for describing the real world in 
mathematical terms, from temperature variations to planetary motions, from brain waves 
to business cycles, and from heartbeat patterns to population growth. Many functions 
have particular importance because of the behavior they describe. Trigonometric func­
tions describe cyclic, repetitive activity; exponential, logarithmic, and logistic functions 
describe growth and decay; and polynomial functions can approximate these and most 
other functions.

1.1 $
_____ iCiiy

Increments
One reason calculus has proved to be so useful is that it is the right mathematics for relat­
ing the rate of change of a quantity to the graph of the quantity. Explaining that relation­
ship is one goal of this book. It all begins with the slopes of lines.

When a particle in the plane moves from one point to another, the net changes or 
increments in its coordinates are found by subtracting the coordinates of its starting point 
from the coordinates of its stopping point.

. . . and why

Linear equations are used exten­
sively in business and economic 
applications.

DEFINITION Increm ents

If a particle moves from the point (xj, j j )  to the point (x2, y2), the increments in its 
coordinates are

Ax =  x 2 ~  x t and Ay = y2 — yj.

What you'll learn about

• Increments

• Slope of a Line

• Parallel and Perpendicular Lines

• Equations of Lines

• Applications

Lines

Ay = rise

/>,(*,, y , ) /  »Q{xv y ) 
/  \ x  = run

O

Figure 1.1 The slope of line L is
rise Ay 

m = —— = —. 
run Ax

The symbols A x  and Ay are read “delta x” and “delta y.” The letter A is a Greek capital 
d  for “difference.” Neither Ax nor Ay denotes multiplication; Ax is not “delta times x” nor 
is Ay “delta times y.”

Increments can be positive, negative, or zero, as shown in Example 1.

EXAMPLE 1 Finding Increm ents
The coordinate increments from (4, —3) to (2, 5) are

Ax =  2 -  4 =  - 2 ,  Ay =  5 -  ( -3 )  =  8.

From (5, 6) to (5, 1), the increments are

Ax =  5 — 5 =  0, Ay =  1 — 6 =  —5. Now try Exercise 1.

Slope of a Line
Each nonvertical line has a slope, which we can calculate from increments in coordinates.

Let L  be a nonvertical line in the plane and P 1(x1, y,) and P2(x2, y2) two points on L 
(Figure 1.1). We call Ay = y2 ~  y, the rise from P } to P2 and Ax =  x2 — x, the run from
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Figure 1.2 If Ll || L2, then = d2 and 
ml = m2. Conversely, if m, = m2, then 

= 02 and Lx || L2.

Figure 1.3 A ADC is similar to A CDB. 
Hence <f>] is also the upper angle in A CDB, 
where tan (f)l = a!h.

Figure 1.4 The standard equations for 
the vertical and horizontal lines through 
the point (2, 3) are x = 2 and y — 3. 
(Example 2)

P x to P2. Since L  is not vertical, Ax + 0 and we define the slope of L  to be the amount of 
rise per unit of run. It is conventional to denote the slope by the letter m.

DEFINITION Slope

Let P x{xx, yj) and P2(x2, y2) be points on a nonvertical line, L. The slope of L  is

rise _  Ay _  y2 ~  -vi
m =

run Ax

A line that goes uphill as x  increases has a positive slope. A line that goes downhill as x  
increases has a negative slope. A horizontal line has slope zero since all of its points have 
the same y-coordinate, making Ay =  0. For vertical lines, Ax =  0 and the ratio Ay/Ax is 
undefined. We express this by saying that vertical lines have no slope.

Parallel and Perpendicular Lines
Parallel lines form equal angles with the x-axis (Figure l .2). Hence, nonvertical parallel 
lines have the same slope. Conversely, lines with equal slopes form equal angles with the 
x-axis and are therefore parallel.

If two nonvertical lines L, and L2 are perpendicular, their slopes m x and m2 satisfy 
m ]m2 =  — 1, so each slope is the negative reciprocal of the other:

1 1
m i = ------- , m 2 = -------- .

m 2 m x

The argument goes like this: In the notation of Figure 1.3, m t — tan <f){ = a/h, while 
m2 =  tan <̂ 2 =  ~h/a. Hence, m lm2 = (a/h)(—h/a) =  — 1.

Equations of Lines
The vertical line through the point (a, b) has equation x =  a since every x-coordinate on 
the line has the value a. Similarly, the horizontal line through (a, b) has equation y = b.

EXAMPLE 2 Finding Equations of V ertica l and Horizontal Lines
The vertical and horizontal lines through the point (2, 3) have equations x =  2 and 
y =  3, respectively (Figure 1.4). Now try Exercise 9.

We can write an equation for any nonvertical line L  if we know its slope m and the 
coordinates of one point P\{xx, yj) on it. If P(x, y) is any other point on L, then

y - y i =  m,

so that

y — y, =  m(x -  x ,) or y =  m(x -  x,) +  y,.

DEFINITION Point-S lope Equation

The equation

y =  m(x -  Xj) +  yj 

is the point-slope equation of the line through the point (xl5 y, ) with slope m.
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Figure 1.5 A line with slope m and 
^-intercept b.

EXAMPLE 3  Using the Point-S lope Equation
Write the point-slope equation for the line through the point (2, 3) with slope —3/2. 

SOLUTION

We substitutex, = 2 ,y x = 3, and m =  —3/2 into the point-slope equation and obtain

y = - j ( x  -  2) +  3 or y = - j x  + 6.

Now try Exercise 13.

The y-coordinate of the point where a nonvertical line intersects the v-axis is the 
j-intercept of the line. Similarly, the x-coordinate of the point where a nonhorizontal line 
intersects the x-axis is the x-intercept of the line. A line with slope m and ^-intercept 
b passes through (0, b) (Figure 1.5), so

y = m{x — 0) +  b, or, more simply, y  =  m x  +  b.

DEFINITION S lope-ln tercept Equation

The equation

y = m x  +  b

is the slope-intercept equation of the line with slope m and ^-intercept b.

EXAMPLE 4  W riting  the  S lope-ln tercept Equation
Write the slope-intercept equation for the line through (—2, — 1) and (3, 4). 

SOLUTION

The line’s slope is

We can use this slope with either of the two given points in the point-slope equation. For
(x,, )>,) =  ( — 2, —1), we obtain

y =  1 • (x -  ( -2 ) )  +  ( -1 )  

y  = x  + 2 + ( -1 )

V =  x +  1. Now try Exercise 17.

If A  and B are not both zero, the graph of the equation Ax +  By = C is a line. Every line 
has an equation in this form, even lines with undefined slopes.

DEFINITION General L inear Equation

The equation

Ax  +  By =  C (A and B not both 0) 

is a general linear equation in x and v.
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[-5 ,7 ]  by [-2 ,6 ]

Figure 1.6 The line 8x + 5y = 20. 
(Example 5)

Although the general linear form helps in the quick identification of lines, the slope- 
intercept form is the one to enter into a calculator for graphing.

EXAMPLE 5  Analyzing and Graphing a General Linear Equation
Find the slope and y-intercept of the line 8x +  5y =  20. Graph the line.

SOLUTION

Solve the equation for y  to put the equation in slope-intercept form:

8* +  5y = 20

5 y  =  — 8x +  20

This form reveals the slope (m =  —8/5) and y-intercept (b =  4), and puts the equation 
in a form suitable for graphing (Figure 1.6).

Now try Exercise 27.

EXAMPLE 6  W riting  Equations fo r Lines
Write an equation for the line through the point (—1,2) that is (a) parallel, and
(b) perpendicular to the line L: y  = 3x — 4.

SOLUTION

The line L, y  =  3x — 4, has slope 3.

(a) The line y =  3(x +  1) +  2, or y =  3x +  5, passes through the point (—1,2), and
is parallel to L because it has slope 3.

(b) The liney =  (— l/3 )(x  +  1) +  2, o ry  =  (— l/3 )x  +  5 /3 , passes through the point
(—1,2), and is perpendicular to L  because it has slope —1/3.

Now try Exercise 31.

EXAMPLE 7 D eterm in ing  a Function
The following table gives values for the linear function/(x) = mx + b. Determine m 
and b.

x f{x)
- 1  14/3

1 - 4 /3
2 -1 3 /3

SOLUTION

The graph o f / i s  a line. From the table we know that the following points are on the 
line: ( - 1 ,  14/3), (1, - 4 /3 ) ,  (2, -1 3 /3 ) .

Using the first two points, the slope m is

- 4 / 3 - ( 1 4 / 3 )  , 1N —6 _
m  =      ( - 1 )  =  —  =  - 3 .

1 2

S o /(x ) =  —3x +  b . Because/ ( — 1) =  14/3, we have

/ ( - 1 )  =  - 3 ( - l )  +  6

14/3 =  3 + b

b =  5/3.
continued
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Thus, m =  —3, b =  5 /3 , and f( x )  = —3x +  5 /3 .
We can use either of the other two points determined by the table to check our work.

Now try Exercise 35.

Applications
Many important variables are related by linear equations. For example, the relationship 
between Fahrenheit temperature and Celsius temperature is linear, a fact we use to advan­
tage in the next example.

EXAMPLE 8  Tem perature Conversion
Find the relationship between Fahrenheit and Celsius temperature. Then find the Celsius 
equivalent of 90°F and the Fahrenheit equivalent of —5°C.

SOLUTION

Because the relationship between the two temperature scales is linear, it has the form 
F  =  mC + b. The freezing point of water is F = 32° or C =  0°, while the boiling point 
is F  =  212° or C =  100°. Thus,

32 =  m • 0 +  b and 212 =  m  • 100 +  b,

so b =  32 and m =  (212 — 32)/100 =  9 /5 . Therefore,

F  =  - | c + 3 2 ,  or C =  - | ( F - 3 2 ) .

These relationships let us find equivalent temperatures. The Celsius equivalent of 90°F is

C =  - |(9 0  -  32) *  32.2°.

The Fahrenheit equivalent of — 5°C is

9
F  =  5) +  32 =  23°. Now try Exercise 43.

Some graphing utilities have a feature 
that enables them to approximate the 
relationship between variables with a 
linear equation. We use this feature in 
Example 9.

Table 1.1
Year

World Population

Population (millions)
1980 4454
1985 4853
1990 5285
1995 5696
2003 6305
2004 6378
2005 6450

Source: U.S. Bureau of the Census, Statistical 
Abstract of the United States, 2004-2005.

It can be difficult to see patterns or trends in lists of paired numbers. For this reason, we 
sometimes begin by plotting the pairs (such a plot is called a scatter plot) to see whether 
the corresponding points lie close to a curve of some kind. If they do, and if we can find an 
equation y = f ( x )  for the curve, then we have a formula that

1. summarizes the data with a simple expression, and

2. lets us predict values of y  for other values of x.

The process of finding a curve to fit data is called regression analysis and the curve is 
called a regression curve.

There are many useful types of regression curves—power, exponential, logarithmic, si­
nusoidal, and so on. In the next example, we use the calculator’s linear regression feature 
to fit the data in Table 1.1 with a line.

EXAMPLE 9  Regression A nalysis— Predicting W orld Population
Starting with the data in Table 1.1, build a linear model for the growth of the world pop­
ulation. Use the model to predict the world population in the year 2010, and compare 
this prediction with the Statistical Abstract prediction of 6812 million.

continued
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Why Not Round the Decimals in 
Equation 1 Even More?

If we do, our final calculation will be 
way off. Using y  = 80x -  153, 849, for 
instance, gives y  =  6951 when 
x  =  2010, as compared to y  =  6865, 
an increase of 86 million. The rule is: 
Retain all decimal places while working 
a problem. Round only at the end. We 
rounded the coefficients in Equation 1 
enough to make it readable, but not 
enough to hurt the outcome. However, 
we knew how much we could safely 
round only from first having done the 
entire calculation with numbers 
unrounded.

Rounding Rule

Round your answer as appropriate, but 
do not round the numbers in the calcu­
lations that lead to it.

SOLUTION

M odel Upon entering the data into the grapher, we find the regression equation to be ap­
proximately

y  = 19.951x  — 153848.716, (1)

where x represents the year and y  the population in millions.

Figure 1.7a shows the scatter plot for Table 1.1 together with a graph of the regression 
line just found. You can see how well the line fits the data.

(a) (b)

Figure 1.7 (Example 9)

Solve G raphically  Our goal is to predict the population in the year 2010. Reading 
from the graph in Figure 1.7b, we conclude that when x is 2010, y  is approximately 
6865.

C onfirm  A lgebra ically  Evaluating Equation 1 fo rx  =  2010 gives 

y = 79.957(2010) -  153848.716 

*  6865.

In terp re t The linear regression equation suggests that the world population in the 
year 2010 will be about 6865 million, or approximately 53 million more than the Statis­
tical Abstract prediction of 6812 million. Now try  Exercise 45.

Regression Analysis

Regression analysis has four steps:

1. Plot the data (scatter plot).

2. Find the regression equation. For a line, it has the form y  =  m x  +  b.

3. Superimpose the graph of the regression equation on the scatter plot to see the fit.

4. Use the regression equation to predict y-values for particular values of x.
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Quick Review  1.1 (For help, g o to  Section  1.1.)

1. Find the value of y that corresponds to x  = 3 in
y = - 2  + 4(x -  3).

2. Find the value of x  that corresponds to y = 3 in
y  = 3 -  2{x + 1).

In Exercises 3 and 4, find the value of m that corresponds to the 
values of x  and y.

y  ~ 33. x  = 5, y = 2, m =  -
x — 4

2 — v
4. j c = —1, y = —3, m = —------

3 — x

Section 1.1 Exercises

In Exercises 1^1, find the coordinate increments from A to B.

1. A (l,2), B(—1, —1) 2. A (-3 ,2 ) , B ( - l , - 2 )

3. A (-3 , 1), B( —8, 1) 4. A(0, 4), B(0 , - 2 )

In Exercises 5-8, let L  be the line determined by points A and B.
(a) Plot A and B. (b) Find the slope of L.

(c) Draw the graph of L.

5. A(l, —2), B(2,1) 6. A ( - 2 , -1 ) ,  5 (1 ,- 2 )

7. A(2, 3), B(—1,3) 8. A(l, 2), B(l, - 3 )

In Exercise 9-12, write an equation for (a) the vertical line and (b) 
the horizontal line through the point P.

9. P(3,2) 10. P { - 1,4/3)

11. P{0, - V 2 )  12. P(-7T, 0)

In Exercises 13-16, write the point-slope equation for the line 
through the point P with slope m.

13. P (l, 1), m = 1 14. P ( - l ,  1), m = - 1

15. P(0, 3), m = 2 16. P (-4 , 0), m =  - 2

In Exercises 17-20, write the slope-intercept equation for the line 
with slope m and y-intercept b.

17. m = 3, b = —2 18. m = — 1, b = 2

19. m = —1/2, b = —3 20. m = 1/3, /; = — I

In Exercises 21-24, write a general linear equation for the line 
through the two points.

21. (0, 0), (2,3) 22. (1, 1), (2, 1)

23. ( -2 , 0), ( -2 ,  - 2 )  24. ( -2 ,  1), (2, -2 )

In Exercises 5 and 6, determine whether the ordered pair is a solution 
to the equation.

5. 3x — 4y = 5 6. y  = —2x + 5

(a) (2, 1/4) (b) (3 ,-1 )  (a) ( -1 ,7 )  (b) ( -2 ,1 )

In Exercises 7 and 8, find the distance between the points.

7. (1,0), (0,1) 8. (2,1), (1, —1/3)

In Exercises 9 and 10, solve for y in terms of x.

9. 4 x - 3 y  = 7 10. - 2 x  + 5y = - 3

In Exercises 25 and 26, the line contains the origin and the point in the 
upper right comer of the grapher screen. Write an equation for the line.

25. 26.

In Exercises 27-30, find the (a) slope and (b) y-intercept, and
(c) graph the line.

27. 3x +  4y =  12 28. x  + y = 2

29. -  + Z  =  1 30. y = 2x + 4
3 4 7

In Exercises 31-34. write an equation for the line through P that is
(a) parallel to L, and (b) perpendicular to L.

31. P(0,0), L :y =  -;c + 2 32. P (-2 ,  2), L: 2x + y =  4

33. P (-2 ,4 ) ,  L :x  = 5 34. P ( - l ,  1/2), L: y = 3

In Exercises 35 and 36, a table of values is given for the linear 
function f ( x )  = mx + b. Determine m  and b.

35.   36. _______________
x______ f i x )  x  f i x )

1 2  2 - 1  
3 9 4 - 4

5 16 6 - 7

[-10 . 10] by [-25 . 25]
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In Exercises 37 and 38, find the value of x  or y for which the line 
through A and B has the given slope m.

37. A (-2 ,  3), B(4,y), m = - 2 /3

38. A (-8, -2 ) , B(x, 2), tn = 2

39. Revisiting Example 4  Show that you get the same equation in 
Example 4 if you use the point (3, 4) to write the equation.

40. Writing to Learn x- and y-intercepts
(a) Explain why c and d  are the jc-intercept and v-intercept, 
respectively, of the line

(b) How are the x-intercept and y-intercept related to c and d in 
the line

-  +  4 = 2?c d
41. Parallel and Perpendicular Lines For what value of k 

are the two lines 2x + ky = 3 and x  + y — 1 (a) parallel?
(b) perpendicular?

Group Activity In Exercises 42-44, work in groups of two or 
three to solve the problem.

42. Insulation By measuring slopes in the figure below, find the tem­
perature change in degrees per inch for the following materials.

(a) gypsum wallboard

(b) fiberglass insulation

(c) wood sheathing
(d) Writing to Learn Which of the materials in (a)-(c) is the 
best insulator? the poorest? Explain.

Distance through wall (inches)

43. Pressure under Water The pressure p  experienced by a diver 
under water is related to the diver’s depth d  by an equation of the 
formp  = kd  +  \ { k  a constant). When d  = 0 meters, the pressure 
is 1 atmosphere. The pressure at 100 meters is 10.94 atmospheres. 
Find the pressure at 50 meters.

44. Modeling Distance Traveled A car starts from point P  at 
time / = 0 and travels at 45 mph.

(a)Write an expression d(t) for the distance the car travels from P.

(b) Graph y =  d(t).

(c) What is the slope of the graph in (b)? What does it have to do 
with the car?
(d) Writing to Learn Create a scenario in which t  could have 
negative values.
(e) Writing to Learn Create a scenario in which the v-inter­
cept of y  =  d(t) could be 30.

In Exercises 45 and 46, use linear regression analysis.

45. Table 1.2 shows the mean annual compensation of construction 
workers.

Construction Workers' Average Annual 
Compensation

Year
Annual Total Compensation 

(dollars)

1999 42,598
2000 44,764
2001 47,822
2002 48,966

Source: U.S. Bureau of the Census, Statistical Abstract of the United 
States, 2004-2005.

(a) Find the linear regression equation for the data.

(b) Find the slope of the regression line. What does the slope 
represent?

(c) Superimpose the graph of the linear regression equation on a 
scatter plot of the data.

(d) Use the regression equation to predict the construction work­
ers’ average annual compensation in the year 2008.

46. Table 1.3 lists the ages and weights of nine girls.

Girls' Ages and Weights

Age (months) Weight (pounds)

19 22
21 23
24 25
27 28
29 31
31 28
34 32
38 34
43 39

(a) Find the linear regression equation for the data.
(b) Find the slope of the regression line. What does the slope 
represent?
(c) Superimpose the graph of the linear regression equation on a 
scatter plot of the data.

(d) Use the regression equation to predict the approximate 
weight of a 30-month-old girl.

Table 1.3
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54. Fahrenheit versus Celsius We found a relationship between 
Fahrenheit temperature and Celsius temperature in Example 8.

(a) Is there a temperature at which a Fahrenheit thermometer and 
a Celsius thermometer give the same reading? If so, what is it?

(b) Writing to Learn Graph y, = (9/5)x +  32, y2 =
(5/9)(x — 32), and y3 = x  in the same viewing window.
Explain how this figure is related to the question in part (a).

55. Parallelogram  Three different parallelograms have vertices at 
(—1, 1), (2, 0), and (2, 3). Draw the three and give the coordi­
nates of the missing vertices.

56. Parallelogram  Show that if the midpoints of consecutive sides 
of any quadrilateral are connected, the result is a parallelogram.

57. Tangent Line Consider the circle of radius 5 centered at (0, 0). 
Find an equation of the line tangent to the circle at the point (3, 4).

58. Group Activity Distance From a Point to a Line This 
activity investigates how to find the distance from a point P{a, b) 
to a line L: Ax +  By = C.

(a) Write an equation for the line M  through P  perpendicular to L.

(b) Find the coordinates of the point Q in which M and L intersect.

(c) Find the distance from P to Q.

( A ) x = - 5  (B)x = 5 (C) x =  0

(D) x = 5/2 (E) x  = —5/2

52. Multiple Choice Which of the following is an equation of the 
line through (—2, — 1) parallel to the line y = — 3x +  1?

(A) y = -  3x +  5 (B) y = —3x — 7 (C)y =  j - x - |

(D) y  =  —3x +  1 (E) y = —3x — 4

Extending the Ideas
53. The median price of existing single-family homes has increased con­

sistently during the past few years. However, the data in Table 1.4 
show that there have been differences in various parts of the country.

Median Price of Single-Family Homes
Year South (dollars) West (dollars)

1999 145,900 173,700
2000 148,000 196,400
2001 155,400 213,600
2002 163,400 238,500
2003 168,100 260,900

Source: U.S. Bureau of the Census, Statistical Abstract o f the United 
States, 2004-2005.

(a) Find the linear regression equation for home cost in the South.

(b) What does the slope of the regression line represent?
(c) Find the linear regression equation for home cost in the West.

(d) Where is the median price increasing more rapidly, in the 
South or the West?

Standardized Test Questions
You should solve the following problems without using a 
graphing calculator.

47. True or False The slope of a vertical line is zero. Justify your 
answer.

48. True or False The slope of a line perpendicular to the line 
y = mx + b is  \/m . Justify your answer.

49. Multiple Choice Which of the following is an equation of the 
line through ( -3 ,  4) with slope 1/2?

( A ) y - 4  =  | ( x  +  3) (B)y +  3 = | ( x - 4 )

(C) y — 4 =  —2(x +  3) (D) y — 4 =  2(x +  3)

(E) y + 3 = 2(x — 4)

50. Multiple Choice Which of the following is an equation of the 
vertical line through (-2, 4)?

(A) y =  4 (B) x =  2 ( C ) y = - 4

(D) x = 0 (E)x  =  —2

51. Multiple Choice Which of the following is the x-intercept of 
the liney =  2x — 5?
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Functions and Graphs1.2
What you'll learn about

• Functions

• Domains and Ranges

• Viewing and Interpreting Graphs

• Even Functions and Odd 
Functions— Symmetry

• Functions Defined in Pieces

• Absolute Value Function

• Composite Functions 

. . . and why

Functions and graphs form the 
basis for understanding mathe­
matics and applications.

Functions
The values of one variable often depend on the values for another:

• The temperature at which water boils depends on elevation (the boiling point drops as 
you go up).

• The amount by which your savings will grow in a year depends on the interest rate of­
fered by the bank.

• The area of a circle depends on the circle’s radius.

In each of these examples, the value of one variable quantity depends on the value of 
another. For example, the boiling temperature of water, b, depends on the elevation, <?; the 
amount of interest, I, depends on the interest rate, r. We call b and I dependent variables 
because they are determined by the values of the variables e and r on which they depend. 
The variables e and r are independent variables.

A rule that assigns to each element in one set a unique element in another set is called a 
function. The sets may be sets of any kind and do not have to be the same. A function is 
like a machine that assigns a unique output to every allowable input. The inputs make up 
the domain of the function; the outputs make up the range (Figure 1.8).

— — > t  m  >
Input Output

(Domain) (Range)

Figure 1.8 A “machine” diagram for a 
function.

DEFINITION Function

A function from a set D  to a set R is a rule that assigns a unique element in R to each 
element in D.

In this definition, D  is the domain of the function and R is a set containing the range 
(Figure 1.9).

Jleo+tLaAxl Crulesi
(1707-1783)

Leonhard Euler, the 
dominant mathematical 
figure of his century 
and the most prolific 
mathematician ever, 
was also an as­
tronomer, physicist, 
botanist, and chemist, 

and an expert in oriental languages. His 
work was the first to give the function 
concept the prominence that it has in 
mathematics today. Euler's collected 
books and papers fill 72 volumes. This 
does not count his enormous correspon­
dence to approximately 300 addresses. 
His introductory algebra text, written 
originally in German (Euler was Swiss), 
is still available in English translation.

D = domain set
R =  range set

D

(a) (b)

Figure 1.9 (a) A function from a set D to a set R. (b) Not a function. The assignment is 
not unique.

Euler invented a symbolic way to say “y  is a function of x” :

y=f ( x ) ,

which we read as “y  eq u a ls /o f x.” This notation enables us to give different functions dif­
ferent names by changing the letters we use. To say that the boiling point of water is a 
function of elevation, we can write b = f(e ) .  To say that the area of a circle is a function of 
the circle’s radius, we can write A  =  A(r), giving the function the same name as the de­
pendent variable.



Section 1.2 Functions and Graphs 13

The notation y  =  f i x )  gives a way to denote specific values of a function. The value o f f  
at a can be written as f (d ) , read “/ o f  a .”

EXAMPLE 1 The C irc le-A rea Function
Write a formula that expresses the area of a circle as a function of its radius. Use the 
formula to find the area of a circle of radius 2 in.

SOLUTION

If the radius of the circle is r, then the area A(r) of the circle can be expressed as
A(r) =  rrr2. The area of a circle of radius 2 can be found by evaluating the function A(r)
at r =  2.

A(2) =  7t(2)2 =  47t

The area of a circle of radius 2 is 4 ir in2. Now try Exercise 3.

Domains and Ranges

Name: The set of all real numbers
Notation: -co < x  < oo or ( - 00, 00)

Name: The set of numbers greater than a
Notation: a < x  or (a, co)

In Example l , the domain of the function is restricted by context: the independent variable 
is a radius and must be positive. When we define a function y = f ( x )  with a formula and 
the domain is not stated explicitly or restricted by context, the domain is assumed to be the 
largest set of x-values for which the formula gives real values— the so-called natural 
domain. If we want to restrict the domain, we must say so. The domain of y =  x2 is under­
stood to be the entire set of real numbers. We must write “y  =  x2, x  >  0” if we want to re­
strict the function to positive values of x.

The domains and ranges of many real-valued functions of a real variable are intervals or 
combinations of intervals. The intervals may be open, closed, or half-open (Figures 1.10 and 
1.11) and finite or infinite (Figure 1.12).

Name: The set of numbers greater than
or equal to a 

Notation: a s , x or [a,00) Name: Open interval ab
Notation: a < x  < b or (a, b)

• — —< 1
a b
Closed at a and open at b 
Notation: a <  x < b or [a, b)

Name: The set of numbers less than b
Notation: x < b or ( - 00, b)

Name: The set of numbers less than
or equal to b 

Notation: x  <  b or ( - 00, b]

Figure 1.12 Infinite intervals—rays on 
the number line and the number line itself. 
The symbol a> (infinity) is used merely for 
convenience; it does not mean there is a 
number

Name: Closed interval ab
Notation: a < x  <  b or [a, b]

Figure 1.10 Open and closed finite 
intervals.

Open at a and closed at b 
Notation: a < x  <  b or (a, £>]

Figure 1.11 Half-open finite intervals.

The endpoints o f an interval make up the interval’s boundary and are called 
boundary points. The remaining points make up the interval’s interior and are called 
interior points. Closed intervals contain their boundary points. Open intervals con­
tain no boundary points. Every point of an open interval is an interior point of the 
interval.

Viewing and Interpreting Graphs
The points (x, y) in the plane whose coordinates are the input-output pairs of a function 
y  =  f ( x ) make up the function’s graph. The graph of the function y = x  + 2, for example, 
is the set of points with coordinates (x, y) for which y equals x  + 2.
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Power Function

Any function that can be written in the 
form f(x) =  kx“, where k and a are 
nonzero constants, is a power func­
tion

EXAMPLE 2 Identify ing  Dom ain and Range of a Function
Identify the domain and range, and then sketch a graph of the function.

(a) y  =  — (b) y  = V x

SOLUTION

(a) The formula gives a real y-value for every real x -value except x = 0 .(We cannot divide 
any number by 0.) The domain is (-oo, 0) U (0, oo). The value y  takes on every real num­
ber except y =  0. (y =  c :7t 0 i f x  =  1/c) The range is also (— 0) U (0, oo). A sketch is 
shown in Figure 1.13a.

(a) (b)

Figure 1.13 A sketch of the graph of (a) y =  1 /x  and (b) y =  V x . (Example 2)

(b) The formula gives a real number only when x is positive or zero. The domain is 
[ 0 ,0°). Because V x  denotes the principal square root of x, y  is greater than or equal to 
zero. The range is also [0, °o). A sketch is shown in Figure 1.13b.

Now try Exercise 9.

Graphing with pencil and paper requires that you develop graph drawing skills. Graphing 
with a grapher (graphing calculator) requires that you develop graph viewing skills.

Graph V iew ing Skills

1. Recognize that the graph is reasonable.

2. See all the important characteristics of the graph.

3. Interpret those characteristics.

4. Recognize grapher failure.

Being able to recognize that a graph is reasonable comes with experience. You need to 
know the basic functions, their graphs, and how changes in their equations affect the 
graphs.

Grapher failure occurs when the graph produced by a grapher is less than precise— or 
even incorrect— usually due to the limitations of the screen resolution of the grapher.
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Graphing y=  x2/3—Possible 
Grapher Failure

On some graphing calculators you need 
to enter this function as y  = (x2),/3 or 
y  =  (x1/3)2 to obtain a correct graph.
Try graphing this function on your gra- 
pher.

y

(b)

Figure 1.15 (a) The graph of v = x2 
(an even function) is symmetric about the 
y-axis. (b) The graph of y = x3 (an odd 
function) is symmetric about the origin.

EXAMPLE 3 Identify ing  Dom ain and Range of a Function
Use a grapher to identify the domain and range, and then draw a graph of the function,

(a) y  = V 4  — x 2 (b) y = x m

SOLUTION

(a) Figure 1.14a shows a graph of the function for —4 .7 :2  x ^  4.7 and 
—3.1 ^  y £  3.1, that is, the viewing window [—4.7, 4.7] by [ — 3.1, 3.1], with 
x-scale =  >’-scale =  1. The graph appears to be the upper half of a circle. The do­
main appears to be [ - 2 ,  2]. This observation is correct because we must have 
4 — x 2 S  0, or equivalently, —2 <  x <  2. The range appears to be [0, 2], which can 
also be verified algebraically.

!

[-4 .7 ,4 .7 ] by [ -2 ,4 ]

(b)

Figure 1.14 The graph of (a) y  =  V 4  — x 2 and (b) y = x 2/3. (Example 3)

(b) Figure 1.14b shows a graph of the function in the viewing window 
[—4.7, 4.7] by [—2, 4], with x-scale =  y-scale =  1. The domain appears to be 
(—oo, oo), which we can verify by observing that x2/3 =  (V x)2. Also the range is 
[0, oo) by the same observation. Now try Exercise 15.

Even Functions and Odd Functions-Symmetry
The graphs of even and odd functions have important symmetry properties.

DEFINITIONS Even Function, Odd Function

A function y = f(x )  is an

even function of x i f / ( —x) = / (x ) ,  

odd function of x if / ( —x) =  —/(x ) ,

for every x in the function’s domain.

The names even and odd come from powers of x. If y  is an even power of x, as in v =  x2 or 
y  =  x4, it is an even function of x (because (— x)2 =  x2 and (—x)4 =  x4). If y  is an odd power 
of x, as in v =  x or y =  x3, it is an odd function of x (because (— x)1 =  —x and (— x)3 =  —x3).

The graph of an even function is symmetric about the_y-axis. S in ce /(—x) = /(x ) , a point 
(x, v) lies on the graph if and only if the point (—x, v) lies on the graph (Figure 1.15a).

The graph of an odd function is symmetric about the origin. S in c e /(—x) = —/(x), a 
point (x, y) lies on the graph if and only if the point (—x, —y) lies on the graph (Figure 1.15b).

y = -jA-x1
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Figure 1.16 (a) When we add the con­
stant term 1 to the function y =  x 2, the 
resulting function y = x 2 + 1 is still even 
and its graph is still symmetric about the y- 
axis. (b) When we add the constant term 1 
to the function y  =  x, the resulting function 
y = x + 1 is no longer odd. The symmetry 
about the origin is lost. (Example 4)

Equivalently, a graph is symmetric about the origin if a rotation of 180° about the origin 
leaves the graph unchanged.

EXAMPLE 4  Recognizing Even and Odd Functions

f ( x )  =  X2 

f i x )  = X2 +  1

f i x )  = X 

f i x )  = X +  1

Even function: (—x)2 =  x2 for all x; symmetry about y-axis.

Even function: (—x)2 +  1 =  x2 +  1 for all x; symmetry about 
y-axis (Figure 1.16a).

Odd function: (—x) =  —x for all x; symmetry about the origin.

Not o d d : /(—x) =  —x +  1, but - f i x )  =  —x — 1. The two are not 
equal.

Not even: (—x) +  1 x  + 1 for all x #  0 (Figure 1.16b).

Now try Exercises 21 and 23.

It is useful in graphing to recognize even and odd functions. Once we know the graph 
of either type of function on one side of the y-axis, we know its graph on both sides.

Functions Defined in Pieces
While some functions are defined by single formulas, others are defined by applying 
different formulas to different parts of their domains.

EXAMPLE 5  Graphing P iecew ise-D efined Functions
x, x <  0 

x 2, 0 < x  <  1
1, x >  1.

Graph y  = / ( x )

SOLUTION

The values of/ are given by three separate formulas: y  =  — x when x <  0, y =  x2 when 
0 ^  x £  1, and y =  I when x >  1. However, the function is ju st one function, whose 
domain is the entire set of real numbers (Figure 1.17). Now try  Exercise 33.

[-3, 3] by [-1,3]

Figure 1.17 The graph of a piecewise 
defined function. (Example 5).

EXAMPLE 6  W riting  Formulas fo r P iecewise Functions
Write a formula for the function y =  f i x )  whose graph consists of the two line 
segments in Figure 1.18.

SOLUTION

We find formulas for the segments from (0, 0) to (1, I ) and from (1, 0) to (2, 1) and 
piece them together in the manner of Example 5.

Segm ent from  (O, O) to  (1, 1) The line through (0, 0) and (1, 1) has slope 
m = i 1 — 0 ) /( l  — 0) =  1 and y-intercept b = 0. Its slope-intercept equation is y =  x. 
The segment from (0, 0) to (1, 1) that includes the point (0, 0) but not the point (1, 1) is 
the graph of the function y =  x restricted to the half-open interval 0 ^  x <  1, namely,

y =  x, 0 < x <  1. continued
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Figure 1.18 The segment on the left con­
tains (0, 0) but not (1, 1). The segment on 
the right contains both of its endpoints. 
(Example 6)

Segm ent from  (1, 0 )  to  (2 , 1) The line through (1, 0) and (2, 1) has slope 
m  =  (1 — 0)/(2  — 1) =  1 and passes through the point (1,0). The corresponding 
point-slope equation for the line is

y = l(x  -  1) + 0, or y = x  — 1.

The segment from (1, 0) to (2, 1) that includes both endpoints is the graph of y  =  x  — 1 
restricted to the closed interval 1 ^ i < 2 ,  namely,

y  = x  — 1, 1 £  x ^  2.

Piecewise Form ula Combining the formulas for the two pieces of the graph, 
we obtain

0 < x <  1
f ( x )  =

x,
x — 1, 1 < x < 2 . Now try Exercise 43.

[-4 , 8] by [-3 , 5]

Figure 1.20 The lowest point of the 
graph off(x )  = \x — 2| — 1 is (2, — 1). 
(Example 7)

Absolute Value Function
The absolute value function y = |x| is defined piecewise by the formula

x =
—x, x <  0 
x, x > 0 .

The function is even, and its graph (Figure 1.19) is symmetric about the y-axis.

Figure 1.19 The absolute value function has domain (—oo, oo) and range [0, °°).

EXAMPLE 7 Using Transform ations
Draw the graph o f /(x )  =  |x — 2| — 1. Then find the domain and range.

SOLUTION

The graph o f / i s  the graph of the absolute value function shifted 2 units horizontally to 
the right and 1 unit vertically downward (Figure 1.20). The domain of /  is (—oo, oo) and 
the range is [— 1, °°). Now try Exercise 49.

g(x)

Figure 1.21 Two functions can be com­
posed when a portion of the range of the 
first lies in the domain of the second.

Composite Functions
Suppose that some of the outputs of a function g can be used as inputs of a function / We 
can then link g a n d /to  form a new function whose inputs x are inputs of g and whose out­
puts are the numbers f(g(x)),  as in Figure 1.21. We say that the function f(g(x))  (read
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“/  of g of x”) is the composite of g  and/ .  It is made by composing g and f  in the order of 
first g, th e n / The usual “stand-alone” notation for this composite is f o g ,  which is read as 
“/ o f  g." Thus, the value o f f o g  at x is ( fo g )(x )  = f(g(x)).

EXAMPLE 8  Composing Functions
Find a formula for/(g(x)) if g(x) =  x1 and f ( x )  =  x  — 7. Then find/(g(2)).

SOLUTION

To find/(g(x)), we replace* in the form ula/(x) =  x  — 7 by the expression given for 
g(x).

f ( x )  = x - l  

f (g (x ) )  = g(x) - 1  = x 2 -  7

We then find the value o f/(g (2 )) by substituting 2 forx.

f ( g ( 2)) =  (2)2 -  7 =  - 3
Now try Exercise 51.

Composing Functions
Some graphers allow a function such as y, to be used as the independent variable of 
another function. With such a grapher, we can compose functions.

1. Enter the functions y1 = f i x )  = 4 — x2,y 2 = g(x) =  V x , y3 =  y2iy^x)), and 
y 4 = yi(y2(x)). Which of v3 and yA corresponds to f o g ?  to g o /'?

2. Graph v,, y 2, and y 3 and make conjectures about the domain and range of v3.

3. Graph y x, y 2, and y 4 and make conjectures about the domain and range of v4.

4. Confirm your conjectures algebraically by finding formulas for y3 and y 4.

EXPLORATION 1

Q u i c k  R e v i e w  1 . 2  (For help, go to A ppend ix  A1 and  Section 1.2.)

In Exercises 1-6, solve fo rx  In Exercises 9-12, find all real solutions to the equations.

1. 3x -  1 <  5x + 3 2. x{x — 2) >  0 9. f ix )  = x2 -  5

3. \x -  3| <  4 4. |x -  2| >  5 (a) fix )  = 4 (b ) f ix )  = - 6

5. x2 < 16 6. 9 — X 2 £: 0
10. f i x ) = 1/x  

(a) f( x )  = - 5 (b)/(x) = 0

In Exercises 7 and 8, describe how the graph of /  can be transformed 11. f ix )  = V x  + 7

to the graph of g. (a)/(x) = 4 (b)/(x) =  1

7. f{x) = x 2, g(x) = {x + 2)2 -  3 12. f i x )  = V x  -  1

8. f ix )  = M, gix) = \x -  5| + 2 in) f ix )  = - 2 (b)/(x) = 3
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Section 1.2 Exercises

In Exercises 1-4, (a) write a formula for the function and (b) use the 
formula to find the indicated value of the function.

1. the area A of a circle as a function of its diameter d\ the area of a 
circle of diameter 4 in.

2. the height h of an equilateral triangle as a function of its side length 
s; the height of an equilateral triangle of side length 3 m

3. the surface area S of a cube as a function of the length of the
cube’s edge e; the surface area of a cube of edge length 5 ft

4. the volume V of a sphere as a function of the sphere’s radius r; 
the volume of a sphere of radius 3 cm

In Exercises 5-12, (a) identify the domain and range and (b ) sketch 
the graph of the function.

5. y = 4 -  x2 
1. y = 2 + V x -  1

19. y = -

11. y = 1 +

6. y = x 2 — 9 

8. y  = —V —x

10. y  = V ^x

l l - y = 1 +

In Exercises 13-20, use a grapher to (a) identify the domain and 
range and (b) draw the graph of the function.

13. y = V T  14. y = 2V3 - x

15. y = V l  x 2

■x217. y = x 2/5 

19. y = V x  -  3

16. y  = V 9 — x2

18. y  = x3/2

20. y  = 1

In Exercises 21-30, determine whether the function is even, odd, or 
neither. Try to answer without writing anything (except the answer).

21. y = x 4 22. y  = x  + x 2

23. y = x  + 2 24. y  = x2 -  3

25. y = V x2 + 2 26. y = x + x3
v3

27. y = -

29. y  =

x 1-— 1
 1 _
X -  1

28. y = v 2 — . 

130. y =

31./(x) =

33 . / (x )  =

34. f{ x )  =

31-34, graph the piec

3 — x, x <  1
2x, 1 <  X

4 -  x2 X <
(3/2)x + 3/2, 1 <
x + 3, X >

X2, x <  0
*3, 0 < x <  1
2x — 1 X >  1

32. f { x )  = 1, x <  0 
V x, x >  0

35. Writing to Learn The vertical line test to determine whether 
a curve is the graph of a function states: If every vertical line in 
the xy-plane intersects a given curve in at most one point, then 
the curve is the graph of a function. Explain why this is true.

36. Writing to Learn For a curve to be symmetric about the 
x-axis, the point (x, y) must lie on the curve if and only if the point 
(x, —y) lies on the curve. Explain why a curve that is symmetric 
about the x-axis is not the graph of a function, unless the function 
is y  = 0.

In Exercises 37-40, use the vertical line test (see Exercise 35) to
determine whether the curve is the graph of a function.
37. y 38.

39. 40.

In Exercises 41-48, write a piecewise formula for the function.

41. 42. y

- i - l -
1 2  3 4

44.

X

(2, - 1)
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45. 46.

2<

\ .

(-2,-1)
o— •

(1,-1) (3,-1)

47. 48.

In Exercises 49 and 50, (a) draw the graph of the function. Then find 
its (b) domain and (c) range.
49. f ix )  = - |3  -  x\ +  2 50. / ( x) =  2\x + 4| -  3

In Exercises 51 and 52, find
(a)/(g(x)) (b) g(f(x)) (c)/(g(0))
(d)g(/(0)) (e) g(g(-2» (f) / ( / « )

51. f(x )  = x  + 5, g(x) ■= x2 — 3

52. f(x )  = x + 1, g(x) := X — 1

53. Copy and complete the following table.

g(x) fix ) i f  ° g)(x)

(a) ? V x -  5 V x2 -  5

(b) ? 1 + 1 /x X

(c) \ / x 9 X

(d) Vx 7 * * IV o

54. Broadway Season  Sta tistics  Table 1.5 shows the gross rev­
enue for the Broadway season in millions of dollars for several 
years.

Table 1.5 Broadway Season Revenue
Year Amount ($ millions)

1997 558
1998 588
1999 603
2000 666
2001 643
2002 721
2003 771

Source: The League of American Theatres and Producers, Inc, 
New York, NY, as reported in The World Almanac and Book of 
Facts, 2005.

(a) Find the quadratic regression for the data in Table 1.5. Let 
x  =  0 represent 1990, x  =  1 represent 1991, and so forth.

(b) Superimpose the graph of the quadratic regression equation 
on a scatter plot of the data.

(c) Use the quadratic regression to predict the amount of revenue 
in 2008.

(d) Now find the linear regression for the data and use it to pre­
dict the amount of revenue in 2008.

55. The Cone Problem  Begin with a circular piece of paper with a 
4-in. radius as shown in (a). Cut out a sector with an arc length of 
x. Join the two edges of the remaining portion to form a cone 
with radius r and height h, as shown in (b).

(b)

(a) Explain why the circumference of the base of the cone is 
877 — x.

(b) Express the radius r as a function of x.
(c) Express the height h as a function of x.
(d) Express the volume V of the cone as a function of x.

56. Industrial Costs Dayton Power and Light, Inc., has a power 
plant on the Miami River where the river is 800 ft wide. To lay a 
new cable from the plant to a location in the city 2 mi down­
stream on the opposite side costs $180 per foot across the river 
and $100 per foot along the land.
(a) Suppose that the cable goes from the plant to a point Q on 
the opposite side that is x  ft from the point P  directly opposite 
the plant. Write a function C(x) that gives the cost of laying the 
cable in terms of the distance x
(b) Generate a table of values to determine if the least expensive 
location for point Q is less than 2000 ft or greater than 2000 ft 
from point P.

I<--------------- 2 mi----------------»l
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Standardized Test Questions
You should solve the following problems without using a 
graphing calculator.

57. True or False The function/C*) =  x4 + x2 + x is an even 
function. Justify your answer.

58. True or False The function/(x) =  x-3 is an odd function. Jus­
tify your answer.

59. Multiple Choice Which of the following gives the domain of

/ ( * )  =
V 9~-~

(A)x #  ±3 
(D) (-oo, -3 )  U (3, °)

(B) ( -3 ,  3) 

(E) (3, oo)

(C) [—3, 3]

60. Multiple Choice Which of the following gives the range of

f ix )  =  1 +
1

(C) all real numbers

x -  1

(A) ( - 0 0 ,  1) U  (1 ,0 0 )  ( B ) x * l
(D) (—oo, 0) U (0, oo) (E) x i= 0

61. Multiple Choice If/(x) = 2x — 1 and g(x) = x + 3, which of 
the following gives ( / o g)(2)?

(A) 2 (B) 6 (C) 7 (D) 9 (E) 10

62. Multiple Choice The length L of a rectangle is twice as long as 
its width W. Which of the following gives the area A of the rectan­
gle as a function of its width?

(A) A(W) = 3W (B) A(W) =  - W2 (C) A(W) = 2 W2(B)A(W) = - W 2 

(D)A(W) =  W2 + 2W (E) A(W) = W2 -  2W

Explorations
In Exercises 63-66, (a) graph f o  g and g o f  and make a conjecture 
about the domain and range of each function, (b) Then confirm your 
conjectures by finding formulas for/ o g and g of.

63. f(x) = x -  7,

64. /(x) = 1 — x2,

65. f(x )  =  x2 — 3,

2x — 1
66. f{x )  =

x + 3

gix) = V x  

g(x) = V x  

gix) = V x  + 2

, . 3x + 1 
gix) = ~z —

Group Activity In Exercises 67-70, a portion of the graph of a 
function defined on [—2, 2] is shown. Complete each graph assuming 
that the graph is (a) even, (b) odd.

67. v 68. y

y = m

69. 70.

Extending the Ideas
71. Enter = V x, y2 = V l  — x and y3 = y, + y2 on your 

grapher.

(a) Graph V3 in [—3, 3] by [—1, 3].

(b )  Compare the domain of the graph of y 3 with the domains of 
the graphs of yx and y2.
(c) Replace y3 by

?! _ y *  y i  ~  yi. yf y *  y i h i -  and y J y ^

in turn, and repeat the comparison of part (b).

(d) Based on your observations in (b) and (c), what would you 
conjecture about the domains of sums, differences, products, and 
quotients of functions?

72. Even and Odd Functions

(a) Must the product of two even functions always be even?
Give reasons for your answer.

(b ) Can anything be said about the product of two odd functions? 
Give reasons for your answer.
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Exponential Functions________________ O

What you'll learn about

• Exponential Growth

• Exponential Decay

• Applications

• The Number e 

. . . and why

Exponential functions model 
many growth patterns.

Exponential Growth
Table 1.6 shows the growth of $100 invested in 1996 at an interest rate of 5.5%, compounded 
annually.

Table 1.6

Year

Savings Account Growth

Amount (dollars) Increase (dollars)

1996
1997
1998
1999
2000

100
100(1.055) =  105.50 
100(1.055 )2 =  111.30 
100(1.055)3 =  117.42 
100(1.055)4 =  123.88

5.50
5.80
6.12
6.46

After the first year, the value of the account is always 1.055 times its value in the previ­
ous year. After n years, the value is y  =  100 • (1.055)".

Compound interest provides an example of exponential growth and is modeled by a 
function of the form y  =  P • ax, where P is the initial investment and a is equal to 1 plus 
the interest rate expressed as a decimal.

The equation y  =  P • ax, a >  0, a #  1, identifies a family of functions called 
exponential functions. Notice that the ratio of consecutive amounts in Table 1.6 is always 
the same: 111.30/105.30 =  117.42/111.30 =  123.88/117.42 *  1.055. This fact is an im­
portant feature of exponential curves that has widespread application, as we will see.

[-6, 6] by [-2, 6] 

(a)

[-6. 6] by [-2, 6]

(b)

Figure 1.22 A graph of (a) y = 2X and
(b) y = 2~x.

EXPLORATION 1 Exponential Functions

1. Graph the function y  =  ax for a = 2 , 3 , 5, in a [ -5 ,  5] by [ -2 ,  5] viewing window.

2. For what values of x  is it true that 2X < 3 X <  5 (?

3. For what values of x  is it true that 2X >  3X >  5 ‘?

4. For what values of x is it true that 2X = 3X = 5 V?

5. Graph the function y  =  ( I /a Y  = a~x for a =  2, 3, 5.

6. Repeat parts 2 -4  for the functions in part 5.

DEFINITION Exponential Function

Let a be a positive real number other than 1. The function

f i x )  =  ax

is the exponential function with base a.

The domain o f /(x )  =  ax is (—oo, oo) and the range is (0, oo). if  a >  1, the graph o f /  
looks like the graph of y  =  2X in Figure 1.22a. If 0 <  a <  1, the graph of /  looks like the 
graph of y  =  2~x in Figure 1.22b.

EXAMPLE 1 Graphing an Exponentia l Function
Graph the function y  =  2(3*) — 4. State its domain and range. continued
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[-5. 5] by [-5,5]

Figure 1.23 The graph ofy  =  2(3*) — 4. 
(Example 1)

SOLUTION

Figure 1.23 shows the graph of the function y. It appears that the domain is (—<», °°). The 
range is ( - 4 ,  °°) because 2(3X) >  0 for all x. Now try Exercise 1.

EXAMPLE 2 Finding Zeros
Find the zeros off ( x )  =  5 — 2.5c graphically.

SOLUTION

Figure 1.24a suggests th a t/h a s  a zero between x  =  1 and x  = 2, closer to 2. We can 
use our grapher to find that the zero is approximately 1.756 (Figure 1.24b).

Now try Exercise 9.

y = 5-2.5* Exponential functions obey the rules for exponents.

(a)

y = 5-2.5x

(b)

Figure 1.24 (a) A graph of 
fix )  = 5 — 2.5X. (b) Showing the use of 
the ZERO feature to approximate the zero 
o f /  (Example 2)

Rules fo r Exponents

If a >  0 and b >  0, the following hold for all real numbers x  and v.

1. ax *ay = ax+y
CL

2' ^  = aX~y 3. (ax)y = {ay)x =  axy

4. ax • bx =  (ab)x
\ b )  bx

In Table 1.6 we observed that the ratios of the amounts in consecutive years were al­
ways the same, namely the interest rate. Population growth can sometimes be modeled 
with an exponential function, as we see in Table 1.7 and Example 3.

Table 1.7 gives the United States population for several recent years. In this table we 
have divided the population in one year by the population in the previous year to get an 
idea of how the population is growing. These ratios are given in the third column.

United States Population
Year Population (millions) Ratio

1998 276.1
279.3/276.1 =  1.0116

1999 279.3
282.4/279.3 =1.0111

2000 282.4
285.3/282.4 =  1.0102

2001 285.3
288.2/285.3 =  1.0102

2002 288.2
291.0/288.2 =  1.0097

2003 291.0
Source: Statistical Abstract o f the United States, 2004-2005.

EXAMPLE 3 Predicting United S tates Population
Use the data in Table 1.7 and an exponential model to predict the population of the 
United States in the year 2010.
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[0, 80] by [-3 , 5]

Figure 1.25 (Example 4)

U.S. Population
Year Population (millions)

1880 50.2
1890 63.0
1900 76.2
1910 92.2
1920 106.0
1930 123.2
1940 132.1
1950 151.3
1960 179.3
1970 203.3
1980 226.5
1990 248.7

Source: The Statistical Abstract o f the United
States, 2004-2005.

Table 1.8

SOLUTION

Based on the third column of Table 1.7, we might be willing to conjecture that the popu­
lation of the United States in any year is about 1.01 times the population in the previous 
year.

If we start with the population in 1998, then according to the model the population 
(in millions) in 2010 would be about

276.1(1.01)12 — 311.1,

or about 311.1 million people. Now try Exercise 19.

Exponential Decay
Exponential functions can also model phenomena that produce a decrease over time, such 
as happens with radioactive decay. The half-life of a radioactive substance is the amount 
of time it takes for half of the substance to change from its original radioactive state to a 
nonradioactive state by emitting energy in the form of radiation.

EXAMPLE 4  M odeling R adioactive Decay
Suppose the half-life of a certain radioactive substance is 20 days and that there are 
5 grams present initially. When will there be only l gram of the substance remaining?

SOLUTION

M odel The number of grams remaining after 20 days is

m
The number of grams remaining after 40 days is

The function y = 5( l /2 ) '/20 models the mass in grams of the radioactive substance after 
t days.
Solve G raphically Figure 1.25 shows that the graphs of y x = 5 ( l/2 ) '/20 and 
y2 = 1 (for 1 gram) intersect when t is approximately 46.44.
In terp re t There will be 1 gram of the radioactive substance left after approximately 
46.44 days, or about 46 days 10.5 hours. Now try  Exercise 23.

Compound interest investments, population growth, and radioactive decay are all 
examples of exponential growth and decay.

DEFINITIONS Exponential Growth, Exponential Decay

The function y = k • a x, k >  O i s a  model for exponential growth if a >  1, and a 
model for exponential decay if 0 <  a <  1.

Applications
Most graphers have the exponential growth and decay model y = k -  ax built in as an expo­
nential regression equation. We use this feature in Example 5 to analyze the U.S. population 
from the data in Table 1.8.
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EXAMPLE 5  Predicting the  U.S. Population
Use the population data in Table 1.8 to estimate the population for the year 2000. Com­
pare the result with the actual 2000 population of approximately 281.4 million.

SOLUTION

M odel Let x =  0 represent 1880, x  =  1 represent 1890, and so on. We enter the data 
into the grapher and find the exponential regression equation to be

f ( x )  =  (56.4696)(1.1519)*.

Figure 1.26 shows the graph of/superim posed on the scatter plot of the data.

Solve G raphically  The year 2000 is represented by x  =  12. Reading from the curve, 
we find

/ ( 1 2) ~  308.2.

The exponential model estimates the 2000 population to be 308.2 million, an overesti­
mate of approximately 26.8 million, or about 9.5%.

Now try Exercise 39(a, b).

EXAMPLE 6  In terpreting  Exponential Regression

What annual rate of growth can we infer from the exponential regression equation in 
Example 5?

SOLUTION

Let /• be the annual rate of growth of the U.S. population, expressed as a decimal. Be­
cause the time increments we used were 10-year intervals, we have

(1 +  r)10 ~  1.1519

r ~  "^ l .1519 -  1 

r  ~  0.014

The annual rate of growth is about 1.4%. Now try  Exercise 39(c).

[-10 , 10] by  [-5 , 10]

The Number e
Many natural, physical, and economic phenomena are best modeled by an exponential 
function whose base is the famous number e, which is 2.718281828 to nine decimal 
places. We can define e to be the number that the function/(x) =  (1 +  1 /x )x approaches 
as x  approaches infinity. The graph and table in Figure 1.27 strongly suggest that such a 
number exists.

The exponential functions y  = ex and y  =  e x are frequently used as models of expo­
nential growth or decay. For example, interest compounded continuously uses the model 
y  =  P • ert, where P is the initial investment, r is the interest rate as a decimal, and t is 
time in years.

X m
1000

200 0
3000
400 0
5000
600 0
7000

2.7169
2.7176
2.7178
2.7179 
2.718
2.7181
2.7181

Yi =  (l +  1/X ) AX

Figure 1.27 A graph and table of values 
for/(x) =  (1 4- 1 /x )x both suggest that as 
x -^™ ,f(x )—>e ~  2.718.

y  =  (1 +  Vx Y

r
i .  i- i i i i . . i  i i i i  i i i  i i i i

[-1 , 15] by [-50 , 350] 

Figure 1.26 (Example 5)
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Quick Review  1.3 (For help, go to Section 1.3.)

In Exercises 1-3, evaluate the expression. Round your answers to 
3 decimal places.

In Exercises 7 and 8, find the value of investing P  dollars for n years 
with the interest rate r  compounded annually.

1. 52/3 2. 3 ^ 7. P  = $500, r = 4.75%, n = 5 years

3. 3_15 8. /> =  $1000, r  = 6.3%, n = 3 years

In Exercises 4-6, solve the equation. Round your answers to 
4 decimal places.

4. x3 = 17 5. x5 = 24

In Exercises 9 and 10, simplify the exponential expression.

■"•(‘■nr)
6. x10 = 1.4567

Section 1 .3  Exercises |

In Exercises 1̂ 4-, graph the function. State its domain and range.

1. y  = -2 *  + 3 2. y = ex + 3

3. y = 3 • e~x — 2 4. y  = - 2 ~ x -  1

In Exercises 5-8, rewrite the exponential expression to have the indi­
cated base.

5. 92t, base 3 6. 163r, base 2
7. (1/8)2*, base 2 8. (1/27)*, base 3

In Exercises 9-12, use a graph to find the zeros of the function.

9. f{x )  = 2X — 5 10. f i x )  = ex - 4

11. f i x )  = 3X -  0.5 12. f i x )  =  3 -  2X

In Exercises 13-18, match the function with its graph. Try to do it 
without using your grapher.

13. y = 2x 14. y  = 3~x 15. y = - 3 ~ x

16. y  =  - 0 .5 -JI 17. y  = 2~x — 2 18. v =  1.5' - 2

(b)

(c)

A

19. P opula tion  o f  N evada  Table 1.9 gives the population of 
Nevada for several years.

K7TTEW HI Population of Nevada
Year Population (thousands)

1998 1.853
1999 1,935
2000 1,998
2001 2,095
2002 2,167
2003 2,241

Source: Statistical Abstract o f the United States, 
2004-2005. I

(a) Compute the ratios of the population in one year by the popu­
lation in the previous year.

(b) Based on part (a), create an exponential model for the popula­
tion of Nevada.

(c) Use your model in part (b) to predict the population of 
Nevada in 2010.

20. P opula tion  o f  Virginia Table 1.10 gives the population of 
Virginia for several years.

KTETTKlFTtl Population of Virginia
Year Population (thousands)

1998 6,901
1999 7,000
2000 7,078
2001 7,193
2002 7,288
2003 7,386

(e) (f)

Source: Statistical Abstract o f the United States, 
2004-2005.

(a) Compute the ratios of the population in one year by the 
population in the previous year.

(b) Based on part (a), create an exponential model for the 
population of Virginia.

(c) Use your model in part (b) to predict the population of 
Virginia in 2008.
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In Exercises 21-32, use an exponential model to solve the problem.

21. Population Growth The population of Knoxville is 500,000 
and is increasing at the rate of 3.75% each year. Approximately 
when will the population reach 1 million?

22. Population Growth The population of Silver Run in the year 
1890 was 6250. Assume the population increased at a rate of 
2.75% per year.

(a) Estimate the population in 1915 and 1940.

(b )  Approximately when did the population reach 50,000?

23. Radioactive Decay The half-life of phosphorus-32 is about 
14 days. There are 6.6 grams present initially.

(a) Express the amount of phosphorus-32 remaining as a 
function of time t.

(b) When will there be 1 gram remaining?

24. Finding Time If John invests $2300 in a savings account with 
a 6% interest rate compounded annually, how long will it take 
until John’s account has a balance of $4150?

„ 25. Doubling Your Money Determine how much time is required 
for an investment to double in value if interest is earned at the 
rate of 6.25% compounded annually.

26. Doubling Your Money Determine how much time is required 
for an investment to double in value if interest is earned at the 
rate of 6.25% compounded monthly.

27. Doubling Your Money Determine how much time is required 
for an investment to double in value if interest is earned at the 
rate of 6.25% compounded continuously.

28. Tripling Your Money Determine how much time is required 
for an investment to triple in value if interest is earned at the rate 
of 5.75% compounded annually.

29. Tripling Your Money Determine how much time is required 
for an investment to triple in value if interest is earned at the rate 
of 5.75% compounded daily.

30. Tripling Your Money Determine how much time is required 
for an investment to triple in value if interest is earned at the rate 
of 5.75% compounded continuously.

31. Cholera Bacteria Suppose that a colony of bacteria starts 
with 1 bacterium and doubles in number every half hour. How 
many bacteria will the colony contain at the end of 24 h?

32. Eliminating a Disease Suppose that in any given year, the 
number of cases of a disease is reduced by 20%. If there are 
10,000 cases today, how many years will it take

(a) to reduce the number of cases to 1000?

(b ) to eliminate the disease; that is, to reduce the number of 
cases to less than 1?

Group Activity In Exercises 33-36, copy and complete the table 
for the function.

33. y = 2x — 3

X y Change (Ay)

1 ?
?

2 ?
?

3 ?
?

4 ?

y =  ~3x + 4

X y Change (Ay)

1 ?
?

2 ?
?

3 ?
?

4 ?

y = x2

x y Change (Ay)

1 ?
?

2 7
?

3 7
?

4 7

V II U>

X y Ratio O y V i)
1 7

?
2 7

?
3 7

?
4 7

37. Writing to Learn Explain how the change Ay is related to 
the slopes of the lines in Exercises 33 and 34. If the changes in x 
are constant for a linear function, what would you conclude 
about the corresponding changes in y l

38. B acteria  G rowth  The number of bacteria in a petri dish cul­
ture after t  hours is

B =  lOOe0693'.
(a) What was the initial number of bacteria present?
(b )  How many bacteria are present after 6 hours?

(c) Approximately when will the number of bacteria be 200? 
Estimate the doubling time of the bacteria.
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39. Population  o f Texas Table 1.11 gives the population of 
Texas for several years.

nnnaimd Population of Texas
Year Population (thousands)

1980 14,229
1990 16,986
1995 18,959
1998 20,158
1999 20,558
2000 20,852

Source: Statistical Abstract o f the United States,
2004-2005.

(a) Let x = 0 represent 1980, x  = 1 represent 1981, and so forth. 
Find an exponential regression for the data, and superimpose its 
graph on a scatter plot of the data.
(b) Use the exponential regression equation to estimate the 
population of Texas in 2003. How close is the estimate to the ac­
tual population of 22.119,000 in 2003?

(c) Use the exponential regression equation to estimate the an­
nual rate of growth of the population of Texas.

40. P opulation o f  California  Table 1.12 gives the population of 
California for several years.

Population of California
Year Population (thousands)

1980 23,668
1990 29,811
1995 31,697
1998 32,988
1999 33,499
2000 33,872

Source: Statistical Abstract of the United States,
2004-2005.

(a) Let x  = 0 represent 1980, x  = I represent 1981, and so forth. 
Find an exponential regression for the data, and superimpose its 
graph on a scatter plot of the data.
(b) Use the exponential regression equation to estimate the pop­
ulation of California in 2003. How close is the estimate to the 
actual population of 35,484,000 in 2003?
(c) Use the exponential regression equation to estimate the an­
nual rate of growth of the population of California.

Table 1.12

Standardized Test Questions
i{  ̂You may use a graphing calculator to solve the following

problems.

41. True or False The number 3~2 is negative. Justify your answer.

42. True or False If 43 = 2fl, then a = 6. Justify your answer.

43. Multiple Choice John invests $200 at 4.5% compounded annu­
ally. About how long will it take for John’s investment to double in 
value?
(A) 6 yrs (B) 9 yrs (C )12yrs (D )16yrs (E) 20 yrs

44. Multiple Choice Which of the following gives the domain of
y  = 2e~x — 3?
(A) (-OO, 00) (B )[-3,00) (C H -1,00) (D) ( — 00, 3]

(E) x *  0

45. Multiple Choice Which of the following gives the range of 
y = 4 -  2_ v?
(A) ( - 00, 00) (B) (-oo, 4) (C )[-4 ,°o)

(D) (—oo, 4] (E) all reals

46. Multiple Choice Which of the following gives the best 
approximation for the zero off(x )  = 4 — exl
( A ) x = -1.386 (B)x = 0.386 (C )x =  1.386

(D) x  = 3 (E) there are no zeros

Exploration
47. Let y, = x 2 and y 2 =  2X.

(a) Graph y ] and y2 in [—5, 5] by [—2, 10]. How many times do 
you think the two graphs cross?
(b) Compare the corresponding changes in y x and y2 as x  
changes from 1 to 2, 2 to 3, and so on. How large must x  be for 
the changes in y2 to overtake the changes in y{!

(c) Solve for x: x 2 = 2X. (d) Solve for x: x 2 <  2X.

Extending the Ideas
In Exercises 48 and 49, assume that the graph of the exponential 
function f(x )  = k-  ax passes through the two points. Find the values 
of a and k.

48. (1,4.5), ( -1 ,0 .5 )  49. (1, 1.5), ( - 1 ,  6)
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Quick Quiz for AP* Preparation: Sections 1.1-1.3

W a  You may use graphing calculator to solve the following 
problems.

1. Multiple Choice Which of the following gives an equation for 
the line through (3 ,-1 )  and parallel to the line y = -2 x  + 1?

( A ) = 2X + 2 (B>y = { JC_f  (C) y =  ~2x + 5

(D) j  = —2x — 7 (E) y =  —2x -t- 1

2. Multiple Choice If f(x )  = x2 + 1 and g(;t) =  2x — 1, which 
of the following g ives/o  g(2)?

(A) 2 (B) 5 (C) 9 (D) 10 (E) 15

3. Multiple Choice The half-life of a certain radioactive sub­
stance is 8 hrs. There are 5 grams present initially. Which of the 
following gives the best approximation when there will be 1 
gram remaining?

(A) 2 (B)10 (C) 15 (D) 16 (E) 19

4. Free Response Let f(x )  = e~x -  2.

(a) Find the domain off. (b) Find the range off.
(c) Find the zeros off.
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Parametric Equations1.4
W hat you'll learn  about

• Relations

• Circles

• Ellipses

• Lines and Other Curves 

. . .  and why

Parametric equations can be 
used to obtain graphs of relations 
and functions.

[-5 , 5] by [-5 , 10]

Figure 1.28 You must choose a smallest 
and largest value for t in parametric mode. 
Here we used 0 and 10, respectively. 
(Example 1)

Relations
A relation is a set of ordered pairs 0c, _y) of real numbers. The graph of a relation is the 
set of points in the plane that correspond to the ordered pairs of the relation. If x and y  are 
functions of a third variable t, called a parameter, then we can use the parametric mode of 
a grapher to obtain a graph of the relation.

EXAMPLE 1 Graphing H alf a Parabola
Describe the graph of the relation determined by

x  = V t ,  y  — t, t >  0.

Indicate the direction in which the curve is traced. Find a Cartesian equation for a curve 
that contains the parametrized curve.

SOLUTION

Set JC, =  V t ,  _V| =  t, and use the parametric mode of the grapher to draw the graph in 
Figure 1.28. The graph appears to be the right half of the parabola y =  x 1. Notice that 
there is no information about t on the graph itself. The curve appears to be traced to the 
upper right with starting point (0, 0).
C onfirm  A lgebra ically  Both x  and y  will be greater than or equal to zero 
because t >  0. Eliminating t we find that for every value of t,

y  =  t = ( V t ) 2 = x 2.

Thus, the relation is the function y = x 2, x  s  0.
Now try Exercise 5.

DEFINITIONS P aram etric  Curve, Param etric  Equations

If x and y  are given as functions

x = f ( t ) ,  y = g(t)

over an interval of /-values, then the set of points (x, y) =  ( / ( / ) ,  g(t))  defined by 
these equations is a parametric curve. The equations are parametric equations 
for the curve.

The variable t is  a parameter for the curve and its domain I is the parameter interval. 
If /  is a closed interval, a <  ( <  fc, the point (f ( a ), g(a)) is the initial point o f the curve 
and the point ( f(b) ,  g(b)) is the terminal point of the curve. When we give parametric 
equations and a parameter interval for a curve, we say that we have parametrized the 
curve. The equations and interval constitute a parametrization of the curve.

In Example 1, the parameter interval is [0, <»), so (0, 0) is the initial point and there is 
no terminal point.

A grapher can draw a parametrized curve only over a closed interval, so the portion it 
draws has endpoints even when the curve being graphed does not. Keep this in mind when 
you graph.
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x = 2 cos t ,y  = 2 sinf

[-4.7, 4.7] by [-3.1, 3.1]

Figure 1.29 A graph of the parametric 
curve x = 2 cos t,y  = 2 sin t, with Tmin = 
0, Tmax =  2ir, andTstep = tt/24 ~  0.131. 
(Example 2)

Circles
In applications, t often denotes time, an angle, or the distance a particle has traveled along 
its path from its starting point. In fact, parametric graphing can be used to simulate the 
motion of the particle.

Parametrizing Circles

Let x  = a cos t and y  = a sin t.

1. Let a =  1, 2, or 3 and graph the parametric equations in a square viewing win­
dow  using the parameter interval [0 , 27r], H o w  does changing a affect this 
graph?

2 . Let a =  2 and graph the parametric equations using the following parameter in­
tervals: [ 0 , 77-/2], [ 0 , 77], [0 , 377/2], [27t, 477], and [0, 47t]. Describe the role of 
the length of the parameter interval.

3 . Let a =  3 and graph the parametric equations using the intervals [77-/2 , 37t/2], 
[77, 277], [37t/2, 377], and [77, 577]. What are the initial point and terminal point 
in each case?

4 . Graph x  =  2 cos ( —f) and y  =  2  sin ( —t) using the parameter intervals [0 , 277], 
[77, 377], and [77/ 2 , 3 n /2 \. In each case, describe how the graph is traced.

For x  = a cos t and y = a sin t, we have

x 1 +  y 2 = a2 cos2 1 + a2 sin2 t = a2(cos2 / +  sin2 t) =  a 2(l)  =  a2,

using the identity cos2 1 +  sin2 1 = 1. Thus, the curves in Exploration 1 were either circles 
or portions of circles, each with center at the origin.

EXAMPLE 2 Graphing a Circle
Describe the graph of the relation determined by

x  = 2 cos t, y = 2 sin t, 277.

Find the initial and terminal points, if any, and indicate the direction in which the curve 
is traced. Find a Cartesian equation for a curve that contains the parametrized curve.

SOLUTION

Figure 1.29 shows that the graph appears to be a circle with radius 2. By watching the 
graph develop we can see that the curve is traced exactly once counterclockwise. The 
initial point at t =  0 is (2, 0), and the terminal point at f =  277 is also (2, 0).

Next we eliminate the variable t.

x 2 +  y 2 =  4 cos2? +  4 sin2?

=  4 (cos2r +  sin2?)

=  4 Because cos2 1 +  sin2 1 =  1

The parametrized curve is a circle centered at the origin of radius 2.
Now try Exercise 9.

EXPLORATION 1
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Ellipses
Parametrizations of ellipses are similar to parametrizations of circles. Recall that the stan­
dard form of an ellipse centered at (0, 0) is

[-9 ,9 ]  by [-6 , 6]

Figure 1.30 A graph of the parametric 
equations x =  3 cos t, y  = 4 sin t for 
0 < / s  27r. (Example 3)

EXAMPLE 3 Graphing an Ellipse
Graph the parametric curve x  =  3 cos t , y  = 4 sin f, 0 <  ; <  277.

Find a Cartesian equation for a curve that contains the parametric curve. What portion 
of the graph of the Cartesian equation is traced by the parametric curve? Indicate the di­
rection in which the curve is traced and the initial and terminal points, if any.

SOLUTION

Figure 1.30 suggests that the curve is an ellipse. The Cartesian equation is

so the parametrized curve lies along an ellipse with major axis endpoints (0, ± 4) 
and minor axis endpoints (±3 , 0). As t increases from 0 to 277, the point (x, y) =
(3 cos t, 4 sin t) starts at (3, 0) and traces the entire ellipse once counterclockwise. Thus, 
(3, 0) is both the initial point and the terminal point. Now try Exercise 13.

Q u Q u fiQ  P aram etrizing  Ellipses

Let x  = a cos t and y  = b sin t.

1. Let a =  2 and b =  3. Then graph using the parameter interval [0, 277]. Repeat, 
changing b to 4, 5, and 6.

2. Let a — 3 and b = 4. Then graph using the parameter interval [0, 277]. Repeat, 
changing a to 5, 6, and 7.

3 . Based on parts 1 and 2, how do you identify the axis that contains the major axis 
of the ellipse? the minor axis?

4. Let a = 4 and b = 3. Then graph using the parameter intervals [0 ,77/ 2 ], [0 ,77], 
[0, 377/2], and [0, 477], Describe the role of the length of the parameter interval.

5. Graph x  =  5 cos (—t) and y = 2 sin (—t) using the parameter intervals (0, 277], 
[77, 377], and [77/ 2 , 377/2]. Describe how the graph is traced. What are the initial 
point and terminal point in each case?

For x = a cos t and y = b sin t, we have (x / a )2 +  (y/b)2 =  cos2 t +  sin2 t = 1. Thus, 
the curves in Exploration 2 were either ellipses or portions of ellipses, each with center at 
the origin.

In the exercises you will see how to graph hyperbolas parametrically.

Lines and Other Curves
Lines, line segments, and many other curves can be defined parametrically.
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[-4 , 4] by [-2 , 4]

Figure 1.31 The graph of the line seg­
ment x = 3f, y = 2 -  2t, 0 :£ t £  1, with 
trace on the initial point (0, 2). (Example 4)

EXAMPLE 4  Graphing a Line Segm ent

Draw and identify the graph of the parametric curve determined by

x =  31, y  =  2 — 2t, 0 <  / <  1.

SOLUTION

The graph (Figure 1.31) appears to be a line segment with endpoints (0, 2) and (3, 0).

Confirm  A lgebra ically  When t = 0, the equations give x =  0 and y  =  2. When 
t =  1, they give x  =  3 and y  =  0. When we substitute t =  x / 3 into the y  equation, we obtain

,  =  2 - 2( j )  =  - h  +  2.

Thus, the parametric curve traces the segment of the line y 
point (0, 2) to (3, 0).

-(2 /3)x  + 2 from the 
Now try Exercise 17.

If we change the parameter interval [0, 1] in Example 4 to (—°°, °°), the parametrization 
will trace the entire line y  = — (2 /3 )x  +  2.

The bell-shaped curve in Exploration 3 is the famous witch of Agnesi. You will find 
more information about this curve in Exercise 47.

[-5 , 5] by [-2 , 4]

Figure 1.32 The witch of Agnesi 
(Exploration 3)

M a n ia ,  A tjw & U  (1718- 1799 )

The first text to include 
differential and integral 
calculus along with ana­
lytic geometry, infinite 
series, and differential 
equations was written in 
the 1740s by the Italian 
mathematician Maria 

Gaetana Agnesi. Agnesi, a gifted scholar 
and linguist whose Latin essay defending 
higher education for women was pub­
lished when she was only nine years old, 
was a well-published scientist by age 20, 
and an honorary faculty member of the 
University of Bologna by age 30.

Today, Agnesi is remembered chiefly 
for a bell-shaped curve called the witch 
of Agnesi. This name, found only in 
English texts, is the result of a mistrans­
lation. Agnesi's own name for the curve 
was versiera or "turning curve." John 
Colson, a noted Cambridge mathemati­
cian, probably confused versiera with 
avversiera, which means "wife of the 
devil" and translated it into "witch."

EXPLORATION 3 Graphing the Witch of Agnesi

The witch of Agnesi is the curve

x  =  2 cot t, y =  2 sin2 1, 0 <  t <  t t .

1. Draw the curve using the window in Figure 1.32. What did you choose as a 
closed parameter interval for your grapher? In what direction is the curve traced? 
How far to the left and right of the origin do you think the curve extends?

2. Graph the same parametric equations using the parameter intervals { ~ t t /2 , t t /2 ) ,  
(0, 7t/2), and ( t t /2 ,  tt) .  In each case, describe the curve you see and the direction 
in which it is traced by your grapher.

3. What happens if you replace x  =  2 cot t by x  =  - 2  cot t in the original parame­
trization? What happens if you use x =  2 cot (7r — t)l

EXAMPLE 5  P aram etrizing  a Line Segm ent
Find a parametrization for the line segment with endpoints (—2, 1) and (3, 5). 

SOLUTION

Using (—2, 1) we create the parametric equations

x =  —2 + at, y  = 1 +  bt.

These represent a line, as we can see by solving each equation for t and equating to obtain

x + 2 _  y  — I 
a b

continued
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This line goes through the point (—2, 1) when t =  0. We determine a and b so that the 
line goes through (3, 5) when t =  1.

3 =  — 2 + a => a = 5 x = 3 when f = 1.

5 =  1 +  £> => b =  4 y = 5 when f = 1.

Therefore,
x = ~ 2  +  5t, y  = 1 +  At, 0 <  t <  1

is a parametrization of the line segment with initial point (—2, 1) and terminal point (3, 5).
Now try Exercise 23.

Quick R eview  1.4 (For help, go to Section 1.1 and Appendix A 1.)

In Exercises 1-3, write an equation for the line.

1. the line through the points (1,8) and (4, 3)

2. the horizontal line through the point (3, —4)

3. the vertical line through the point (2, —3)

In Exercises 4-6, find the x- and y-intercepts of the graph of the 
relation.

6. 2y 2 = x + 1

In Exercises 7 and 8, determine whether the given points lie on the 
graph of the relation.

7. 2x2y + y 2 = 3
(a) (1,1) (b) ( - 1 , - 1 )  (c) (1/2, —2)

8. 9x2 -  18* +  4y 2 =  27

(a) (1,3) (b) (1, —3) (c) (—1,3)
9. Solve for t.

(a) 2x +  3f = —5 (b) 3y — 2t = — 1
10. For what values of a is each equation true?

(a) \ ra2 = a (b) V o 2 = ±a  (c) V ia 2 =  2\a\

Section 1.4 Exercises

In Exercises 1^4, match the parametric equations with their graph. 
State the approximate dimensions of the viewing window. Give a pa­
rameter interval that traces the curve exactly once.

1. x  =  3 sin(2?), y =  1.5 cos t
2. x  = sin3 t, y  = cos3 1
3. x  =  7 sin t — sin (It), y =  7 cos t — cos (It)
4. x  =  12 sin t — 3 sin(6r), y — 12 cos t +  3 cos(6f)

, y V  ,

(a)

I S - .

In Exercises 5-22, a parametrization is given for a curve.

(a) Graph the curve. What are the initial and terminal points, if
any? Indicate the direction in which the curve is traced.

(b) Find a Cartesian equation for a curve that contains the pa­
rametrized curve. What portion of the graph of the Cartesian 
equation is traced by the parametrized curve?

5. x  = 31, y = 912, —<» <  t < oo

6. x  = —y/t, y  — t, (S O

7. x  = t, y  = V t ,  t >  0

8. x  = (sec2 t) — 1, y =  tan t, —7r/2 <  t < it/2
9. x  = cos t, y = sin t, O S ( < i r

10. x  = sin (27rt), y  = cos (2tt/), 0 s  t <  1
11. x  = cos (tt — t), y  = sin (tt — t), 0 ^  t ^  tt
12. x  = 4 cos t, y = 2 sin t, 0 ^  t £  2ir
13. x  = 4 sin t, y  = 2 cos t, 0 £  t £  it

14. x = 4 sin t, y = 5 cos t, 0 <  t <  2-7T
15. x =  2t -  5, y = 41 — 7, — oo <  / <  oo

(c) (d)
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16. x = 1 — t, y = 1 + t, — °° < t  < oo
17. x = t, y = 1 -  t, 0 <  t <  1
18. x = 3 -  3t, y = 2t, 0 <  r <  1
19. x = 4 -  Vf, y = V r, 0 < f

20. x = t2, y =  V 4  -  t2, 0 < t <  2

21. x = sin t, y = cos 21, — 00 <  t <  00

22. x = t2 -  3, y = t, t <  0

In Exercises 23-28, find a parametrization for the curve.
23. the line segment with endpoints (—1, —3) and (4, 1)
24. the line segment with endpoints (—1,3) and (3, —2)
25. the lower half of the parabola x — 1 = y2
26. the left half of the parabola y = x2 + 2x
27. the ray (half line) with initial point (2, 3) that passes through the 

point (—1, —1)
28. the ray (half line) with initial point ( -1,2)  that passes through 

the point (0, 0)

Group Activity In Exercises 29-32, refer to the graph of 

jc = 3 — |r|, y = t -  1, - 5 < r < 5 ,  
shown in the figure. Find the values of t that produce the graph in the 
given quadrant.
29. Quadrant I 30. Quadrant II
31. Quadrant III 32. Quadrant IV

[-6, 6] by [-8, 8]

In Exercises 33 and 34, find a parametrization for the part of the 
graph that lies in Quadrant I.

33. y  = x 2 + 2x + 2 34. y  = Vx + 3

35. Circles Find parametrizations to model the motion of a particle that 
starts at (a, 0) and traces the circle x2 +  y 2 = a2, a >  0, as indicated.

(a) once clockwise (b) once counterclockwise

(c) twice clockwise (d) twice counterclockwise

36. Ellipses Find parametrizations to model the motion of a parti­
cle that starts at (—a, 0) and traces the ellipse

as indicated.

(a) once clockwise (b) once counterclockwise

(c) twice clockwise (d) twice counterclockwise

Standardized Test Questions
You may use a graphing calculator to solve the following 
problems.

37. True or False The graph of the parametric curve x  = 3 cos t,
y — 4 sin t is a circle. Justify your answer.

38. True or False The parametric curve x =  2 cos (—t),
y  =  2 sin (—t), 0 <  t <  2tt is traced clockwise. Justify your answer.

In Exercises 39 and 40, use the parametric curve x = 5f, y  = 3 — 3/, 
0 < f < l .

39. Multiple Choice Which of the following describes its graph? 

(A) circle (B) parabola (C) ellipse

(D) line segment (E) line

40. Multiple Choice Which of the following is the initial point 
of the curve?

(A) ( - 5 ,  6) (B) (0, —3) (C )(0 ,3) (D) (5, 0)

(E) (10, -3 )

41. Multiple Choice Which of the following describes the graph 
of the parametric curve x = — 3 sin t, y =  — 3 cos ft

(A) circle (B) parabola (C) ellipse

(D) hyperbola (E) line

42. Multiple Choice Which of the following describes the graph 
of the parametric curve x = 3/, y =  2t, t s  1 ?

(A) circle (B) parabola (C) line segment

(D) line (E) ray

Explorations
43. Hyperbolas Let x =  a sec t and y = b tan t.

(a) Writing to Learn Let a =  1, 2, or 3, b = 1,2, or 3, and 
graph using the parameter interval (—77/ 2, tt/2). Explain what you 
see, and describe the role of a and b in these parametric equations. 
(Caution: If you get what appear to be asymptotes, try using the ap­
proximation [—1.57, 1.57] for the parameter interval.)

(b) Let a = 2,b = 3, and graph in the parameter interval 
(77/ 2, 3t7/2). Explain what you see.

(c) Writing to Learn Let a = 2, b =  3, and graph using the 
parameter interval (—77/ 2, 377/2). Explain why you must be 
careful about graphing in this interval or any interval that con­
tains ±7r/2.

(d) Use algebra to explain why

(e) Let x  = a tan t and y  = b sec t. Repeat (a), (b), and (d) using 
an appropriate version of (d).

44. Transform ations  Let x  = (2  cos t) + h and y  = (2  sin t) + k.

(a) Writing to Learn Let k = 0 and h = —2, — 1, 1, and 2, in 
turn. Graph using the parameter interval [0, 277]. Describe the 
role of h.



36  Chapter 1 Prerequisites fo r Calculus

(b ) Writing to Learn Let h = 0 and k = - 2 ,  -1 , 1, and 2, in 
turn. Graph using the parameter interval [0, 2tt]. Describe the 
role of k.
(c) Find a parametrization for the circle with radius 5 and center 
at (2, -3 ).
(d) Find a parametrization for the ellipse centered at ( -3 ,  4) 
with semimajor axis of length 5 parallel to the x-axis and semi­
minor axis of length 2 parallel to the y-axis.

In Exercises 45 and 46, a parametrization is given for a curve.

(a) Graph the curve. What are the initial and terminal points, if 
any? Indicate the direction in which the curve is traced.

(b ) Find a Cartesian equation for a curve that contains the pa­
rametrized curve. What portion of the graph of the Cartesian 
equation is traced by the parametrized curve?

45. x =  —sec t, y = tan t, —tt/2  < t <  7t/2

46. x =  tan t, y = —2 sec /, —7r/2 <  t <  tt/2

Extending the Ideas
47. The Witch o f Agnesi The bell-shaped witch of Agnesi can be 

constructed as follows. Start with the circle of radius 1, centered 
at the point (0, 1) as shown in the figure.

Choose a point A on the line y  =  2, and connect it to the origin 
with a line segment. Call the point where the segment crosses the 
circle B. Let P be the point where the vertical line through A 
crosses the horizontal line through B. The witch is the curve 
traced by P as A moves along the line y  =  2.

Find a parametrization for the witch by expressing the coordi­
nates of P in terms of t, the radian measure of the angle that seg­
ment OA makes with the positive x-axis. The following equalities 
(which you may assume) will help:
(i) x  =  AQ (ii) y =  2 — AB sin t (iii) AB • AO =  (AQ)2

48. Parametrizing Lines and Segments

(a) Show that x = x x + (x2 — x x)t, y = y x +  (y2 ~  y x)t,
—o o < f < o o i s a  parametrization for the line through 
the points (x,, y,) and (x2, y2).
(b) Find a parametrization for the line segment with endpoints
(X j, y x) and (x2, y2).
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Functions and Logarithms1.5

[-5, 5] by [-2. 5]

(a)

i = v x

What you'll learn about

• One-to-One Functions

• Inverses

• Finding Inverses

• Logarithmic Functions

• Properties of Logarithms

• Applications 

. . . and why

Logarithmic functions are used in 
many applications, including find­
ing time in investment problems.

One-to-One Functions
As you know, a function is a rule that assigns a single value in its range to each point in its 
domain. Some functions assign the same output to more than one input. For example, 
/(x )  =  x 2 assigns the output 4 to both 2 and —2. Other functions never output a given 
value more than once. For example, the cubes of different numbers are always different.

If each output value of a function is associated with exactly one input value, the func­
tion is one-to-one.

DEFINITION O ne-to -O ne Function

A function/(x) is one-to-one on a domain D  iff (a )  J=f(b) whenever a #

The graph of a one-to-one function y  =  f ( x )  can intersect any horizontal line at most 
once (the horizontal line test). If it intersects such a line more than once it assumes the 
same y-value more than once, and is therefore not one-to-one (Figure 1.33).

<y = x

One-to-one: Graph meets each 
horizontal line once.

Not one-to-one: Graph meets some 
horizontal lines more than once.

Figure 1.33 Using the horizontal line test, we see that y  =  x3 is one-to-one and y =  x 2 is not.

[-5, 5] by [-2, 3] 

(b)

Figure 1.34 (a) The graph of/(x) =  |x| 
and a horizontal line, (b) The graph of 
g(x) = \ f x  and a horizontal line. 
(Example 1)

EXAMPLE 1 Using th e  H orizonta l Line Test
Determine whether the functions are one-to-one.

(a )/(x ) =  |x| (b) g(x) = V x

SOLUTION

(a) As Figure l .34a suggests, each horizontal line y = c, c >  0, intersects the graph of 
f ( x )  =  |x| twice. S o / is  not one-to-one.

(b) As Figure 1,34b suggests, each horizontal line intersects the graph of g(x) =  V x 
either once or not at all. The function g is one-to-one.

Now try Exercise 1.
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Inverses
Since each output of a one-to-one function comes from just one input, a one-to-one 
function can be reversed to send outputs back to the inputs from which they came. The 
function defined by reversing a one-to-one fu n c tio n /is  the inverse of / .  The functions 
in Tables 1.13 and 1.14 are inverses of one another. The symbol for the inverse o f / i s / -1 , 
read “/ inverse.” The - 1  i n / -1 is not an exponent; / -1(x) does not mean 1 / f ix ) .

BK1 Rental Charge 1 Time versus
versus Time Rental Charge

Time x Charge y Charge x Time y
(hours) (dollars) (dollars) (hours)

1 5.00 5.00 1
2 7.50 7.50 2
3 10.00 10.00 3
4 12.50 12.50 4
5 15.00 15.00 5
6 17.50 17.50 6

As Tables 1.13 and 1.14 suggest, composing a function with its inverse in either order 
sends each output back to the input from which it came. In other words, the result of com­
posing a function and its inverse in either order is the identity function, the function that 
assigns each number to itself. This gives a way to test whether two functions/and g are in­
verses of one another. C om pute/o  g and g o f  If ( / o g)(x) =  (g of)(x) = x, then /  and g are 
inverses of one another; otherwise they are not. The functions f ix )  = x3 and g(x) =  x l/3 are 
inverses of one another because (x3)1/3 =  x and (x1/3)3 =  x for every number x.

Testing for Inverses Graphically

For each of the function pairs below,

(a) G raph /and  g together in a square window.
(b) G raph/'o g. (c) Graph g o /

What can you conclude from the graphs?

1. f ( x )  =  x3, g(x) =  x1/3 2. /(x )  =  x, g(x) = 1/x

3. /(x )  =  3x, gix) =  x /3  4. f{x )  =  ex, g{x) =  In x

EXPLORATION 1

Finding Inverses
How do we find the graph of the inverse of a function? Suppose, for example, that the func­
tion is the one pictured in Figure 1.35a. To read the graph, we start at the point x on the 
x-axis, go up to the graph, and then move over to the y-axis to read the value of y. If we start 
with y and want to find the x from which it came, we reverse the process (Figure 1.35b).

The graph o f / i s  already the graph o f / -1 , although the latter graph is not drawn in the 
usual way with the domain axis horizontal and the range axis vertical. F o r / -1 , the input- 
output pairs are reversed. To display the graph o f / -1 in the usual way, we have to reverse 
the pairs by reflecting the graph across the 45° line y = x  (Figure 1.35c) and interchanging 
the letters x and y (Figure 1.35d). This puts the independent variable, now called x, on the 
horizontal axis and the dependent variable, now called y, on the vertical axis.
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y

(a) To find the value o f /a t  x, we start at x, 
go up to the curve, and then over to the >>-axis.

y

(b) The graph o f / is  also the graph o f / -1.
To find the x that gave y, we start at v and go 
over to the curve and down to the x-axis. The 
domain o f / -1 is the range of/. The range of 
/ -1 is the domain of/.

y

(c) To draw the graph o f / -1 in the (d) Then we interchange the letters x and y.
usual way, we reflect the system We now have a normal-looking graph o f / -1
across the line y  = x. as a function of jc.

Figure 1.35 The graph ofy  =  f ~ x(x).

The fact that the graphs of / a n d / -1 are reflections of each other across the line y  =  x 
is to be expected because the input-output pairs (a, b) o f /h a v e  been reversed to produce 
the input-output pairs (b, a) o f / -1 .

The pictures in Figure 1.35 tell us how to ex p re ss /- 1 as a function of x algebraically.

Writing f _1 as a Function of x

1. Solve the equation y  =  /(x )  for x in terms of y.

2. Interchange x and y. The resulting formula will be y =  f ~ l(x).

EXAMPLE 2 Finding the  Inverse Function
Show that the function y  — f i x )  =  — 2x +  4 is one-to-one and find its inverse function. 

SOLUTION

Every horizontal line intersects the graph o f/exactly  once, s o / i s  one-to-one and has 
an inverse.
Step 1:

Solve fo rx  in terms of y. y  =  —2x +  4
1 +  ox =  ~ —y  +  2

continued
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Graphing y  -  f (x)  and y  = f  ’(x) 
Parametrically

We can graph any function y  =  fix ) as 

*1 =  t, y, =  fit). 
Interchanging t and fit )  produces para­
metric equations for the inverse:

* 2  =  /(©■ V2 =  *.

[-1 .5, 3.5] by [ -1 ,2 ]

Figure 1.36 The graphs o f /a n d /-1 are 
reflections of each other across the line 
y  = x. (Example 3)

Step 2:

Interchange x  and y: y = — ~ x  + 2

The inverse of the function/(x) =  —2x +  4 is the function/-  '(x) =  —(l/2 )x  +  2. We 
can verify that both composites are the identity function.

/ - ‘( / W ) =  ~ j ( ~ 2x +  4) +  2 =  x -  2 +  2 =  x

f { f - \ x ) )  =  - 2  ( ~ x  +  2 j +  4 =  x -  4 +  4 =  x
Now try Exercise 13.

We can use parametric graphing to graph the inverse of a function without finding an 
explicit rule for the inverse, as illustrated in Example 3.

EXAMPLE 3  Graphing the Inverse Param etrica lly
(a) Graph the one-to-one function/(x) =  x 2, x >  0, together with its inverse and the 

line y  =  x, x ^  0.

(b) Express the inverse o f /a s  a function of x.

SOLUTION

(a) We can graph the three functions parametrically as follows:

Graph o f/: x t = t, y x = t 2, t >  0

Graph o f / -1 : x2 =  t2, y2 =  t 

Graph of y  = x: x3 =  t, _y3 =  t

Figure 1.36 shows the three graphs.

(b) Next we find a formula for f~ \ x ) .

Step 1:
Solve for x in terms of y.

Vy" = V x 2

V y  =  x Because x > 0 .

Step 2:
Interchange x and y.

V x  =  y

Thus, f ~ \ x )  =  V x . Now try  Exercise 27.

Logarithmic Functions
If a is any positive real number other than 1, the base a exponential function/(x) =  ax is 
one-to-one. It therefore has an inverse. Its inverse is called the base a logarithm function.

DEFINITION Base a Logarithm  Function

The base a logarithm  function y =  logn x is the inverse of the base a exponential 
function y =  ax (a >  0, a i= 1).

The domain of loga x is (0, °°), the range of a x. The range of loga x is (—oo, oo), the do­
main of a x.
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[-6, 6] by [-4, 4]

Figure 1.37 The graphs of y = 2X (xj = t, 
y, = 2'), its inverse y = log2 x (x2 = 2', 
y2 = t), and y = x (x3 = t, y3 = t).

Because we have no technique for solving for x in terms of y in the equation y =  ax, we 
do not have an explicit formula for the logarithm function as a function of x. However, the 
graph of y =  loga x can be obtained by reflecting the graph of y =  a x across the line y =  x, 
or by using parametric graphing (Figure 1.37).

Logarithms with base e and base 10 are so important in applications that calculators 
have special keys for them. They also have their own special notation and names:

logf x =  In x,

log 10 X — logx.

The function y =  In x is called the natural logarithm function and y =  log x  is often 
called the common logarithm function.

Properties of Logarithms
Because ax and logfl x are inverses of each other, composing them in either order gives the 
identity function. This gives two useful properties.

Inverse Properties for ax and loga x

1. Base a: al°sa x =  x, logu ax =  x, a >  1, x >  0

2. Base e: e,nx =  x, l n e x = x, x > 0

These properties help us with the solution of equations that contain logarithms and 
exponential functions.

EXAMPLE 4  Using the  Inverse Properties
Solve forx: (a) In x =  3f +  5 (b)e2x= 1 0

SOLUTION

(a) In x =  3t + 5

eInx =  e3,+5 Exponentiate both sides.

x =  e Inverse Property

(b) e2* =  10

In e1* = In 10 Take logarithm s of both sides.

2x =  In 10 Inverse Property

x =  — In 10 =  1.15 
2

Now try Exercises 33  and 37.

The logarithm function has the following useful arithmetic properties.

Properties of Logarithm s

For any real numbers x >  0 and y >  0,

1. Product Rule: loga xy  =  loga x +  loga y
X

2. Quotient Rule: loga — =  log„ x — loga y

3. Power Rule: logfl xy =  y loga x
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Supporting the  Product Rule

Let y { = In (ax), y 2 = In x, and y3 =  y x -  y2.

1. Graph v, and y2 for a = 2, 3, 4, and 5. How do the graphs ofy , and y 2 appear to 
be related?

2. Support your finding by graphing v3.

3 . Confirm your finding algebraically.

EXPLORATION 2

The following formula allows us to evaluate loga x for any base a >  0, a + 1, and to 
obtain its graph using the natural logarithm function on our grapher.

[-6, 6] by [-4,4]

Figure 1.38 The graph of/(x) = log2 x 
using/(x) = (lnx)/(ln 2). (Example 5)

EXAMPLE 5 Graphing a Base a Logarithm  Function
Graph f(x) = log2 x.

SOLUTION

We use the change of base formula to rew rite/(x).

f{x )  =  log2 x =

Figure l .38 gives the graph off  Now try Exercise 41.

Applications
In Section 1.3 we used graphical methods to solve exponential growth and decay 
problems. Now we can use the properties of logarithms to solve the same problems 
algebraically.

EXAMPLE 6  Finding Time
Sarah invests $1000 in an account that earns 5.25% interest compounded annually. How 
long will it take the account to reach $2500?

SOLUTION

Model The amount in the account at any time t in years is 1000(1.0525)', so we need 
to solve the equation

1000(1.0525)' =  2500.
continued
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iFinr»W Kl Saudi Arabia's 
Natural Gas Production

Year Cubic Feet (trillions)

1997 1.60
1998 1.65
1999 1.63
2000 1.76
2001 1.90

Source: Statistical Abstract of the
United States, 2004-2005.

Solve A lgebra ically

(1.0525)' =  2.5 Divide by 1000.

In (1.0525)' =  In 2.5 Take logarithm s of both sides.

t In 1.0525 =  In 2.5 Power Rule

, =  ln 2 '5 ■■ 17 9
In 1.0525

In terp re t The amount in Sarah’s account will be $2500 in about 17.9 years, or about 
17 years and 11 months. Now try Exercise 47.

[-5, 15] by [-1,3]

Figure 1.39 The value o f /a t  x = 12 is 
about 1.89. (Example 7)

EXAMPLE 7 Estim ating N atural Gas Production
Table 1.15 shows the annual number of cubic feet in trillions of natural gas produced by 
Saudi Arabia for several years.

Find the natural logarithm regression equation for the data in Table 1.15 and use it to 
estimate the number of cubic feet of natural gas produced by Saudi Arabia in 2002. 
Compare with the actual amount of 2.00 trillion cubic feet in 2002.

SOLUTION

Model We let x =  0 represent 1990, x = 1 represent 1991, and so forth. We compute 
the natural logarithm regression equation to be

f {x )  = 0.3730 +  (0.611) ln(x).

Solve G raphically  Figure 1.39 shows the graph of/superim posed on the scatter 
plot of the data. The year 2002 is represented by x =  12. Reading from the graph we 
ftnd /(12) =  1.89 trillion cubic feet.

In terp re t The natural logarithmic model gives an underestimate of 0.11 trillion cubic 
feet of the 2002 natural gas production. Now try Exercise 49.

Quick R eview  1.5 (For help, go to Sections 1.2, 1.3, and  1.4.)

In Exercises 1-4, let/(x) = V x  -  1, g(x) = x 2 + 1, and evaluate the In Exercises 7-10, find the points of intersection of the two curves, 
expression. Round your answers to 2 decimal places.

1. ( / °  g)0) 7. y = 2x — 3, y =  5

2. ig ° / ) ( —7) 8. y = —3x + 5, y  — —3

3. i f o  g){x) 9. (a) y =  2r, y =  3

4. (go /)(x) (b)y  =  2 \  y =  —1

In Exercises 5 and 6, choose parametric equations and a parameter 10. (a) y = e~x, y  =  4

interval to represent the function on the interval specified. (b) y = e~x, y =  — 1

5. v = ------—, x >  2 6. y = x, x  <  — 3
x  -  I
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Section 1.5 Exercises

In Exercises 1-6, determine whether the function is one-to-one. 

1. y  2. y

3. 4.

6 . y

y = int x

In Exercises 7-12, determine whether the function has an inverse 
function.

7. y = -  1 8. y  = x 2 + 5x 9. y = x3 — 4x + 6
x  — 2

10. y = x3 + x  11. y  = In.*2 12. y = 23~x

In Exercises 13-24, f ind /-1 and verify that

( / ° r 1) w  =  ( r 1° / ) w  =  x.
13. f {x)  = 2x + 3 14. f i x )  = 5 -  4x
15. f i x)  = x 3 — 1 16. f i x )  = x 2 + 1. x > 0
17. f i x )  = x2, x < 0  18. f i x )  = x2/3, x > 0
19. f i x )  = - (x  -  2)2, x < 2

20. /(x ) = x2 + 2 x + l ,  x & — 1

1
22. /(x ) =  —  

.v

24. /(x ) =

1_
x3 
x +  3

21. f i x )  = — x >  0xz

23. f i x )  = —
x + 3 x — 2

In Exercises 25-32, use parametric graphing to graph/,f ~ x, and y = x.

25. /(x ) = 26. f i x )  = 3A 27. f i x )  = 2~x

28. f i x )  = 3~x 29. f i x )  = lnx  30. f i x )  = logx
31. f i x )  = sin-1 x 32. f i x )  = tan-1 x

In Exercises 33-36, solve the equation algebraically. Support your 
solution graphically.

33. (1.045)' = 2 34. e005' = 3

35. ex + e~x = 3 36. 2X + 2~x =  5

In Exercises 37 and 38. solve for y.
37. In y =  2t +  4 38. In (y — 1) — In 2 =  x +  In x

In Exercises 39^-2, draw the graph and determine the domain and 
range of the function.

39. y = 2 In (3 — x) — 4 40. y =  - 3  log (x +  2) +  1

41. y =  log2 ix + 1) 42. y = log3 (x -  4)

In Exercises 43 and 44, find a formula f o r / -1 and verify that 
i f ° f ~ l)ix) = i r l 0 f)ix) = *•

100 ............  5043. f ix)  = 44. f i x )  = ■1 + 2~x j + u -

45. Self-inverse Prove that the function/is its own inverse.

(a)/(x) = V l  - x 2, x >  0 (b)/(x) = 1 / x

46. Radioactive Decay The half-life of a certain radioactive sub­
stance is 12 hours. There are 8 grams present initially.

(a) Express the amount of substance remaining as a function of 
time t.

(b) When will there be 1 gram remaining?

47. Doubling Your Money Determine how much time is required 
for a $500 investment to double in value if interest is earned at 
the rate of 4.75% compounded annually.

48. Population Growth The population of Glenbrook is 375,000 
and is increasing at the rate of 2.25% per year. Predict when the 
population will be 1 million.

In Exercises 49 and 50, let x =  0 represent 1990, x =  1 represent 
1991, and so forth.

49. Natural Gas Production

(a) Find a natural logarithm regression equation for the data in 
Table 1.16 and superimpose its graph on a scatter plot of the data.

1 Table 1.16 1Canada's Natural Gas
Production

Year Cubic Feet (trillions)
1997 5.76
1998 5.98
1999 6.26
2000 6.47
2001 6.60

Source: Statistical Abstract o f the United States,
2004-2005.

(b) Estimate the number of cubic feet of natural gas produced by 
Canada in 2002. Compare with the actual amount of 6.63 trillion 
cubic feet in 2002.

(c) Predict when Canadian natural gas production will reach 7 
trillion cubic feet.
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(a) Find a natural logarithm regression equation for the data in 
Table 1.17 and superimpose its graph on a scatter plot of the 
data.

50. N atura l Gas P roduction

| Table 1.17 1 China's Natural Gas
Production

Year Cubic Feet (trillions)

1997 0.75
1998 0.78
1999 0.85
2000 0.96
2001 1.07

Source: Statistical Abstract o f the United States,
2004-2005.

(b ) Estimate the number of cubic feet of natural gas produced by 
China in 2002. Compare with the actual amount of 1.15 trillion 
cubic feet in 2002.

(c) Predict when China’s natural gas production will reach 1.5 
trillion cubic feet.

51. Group Activity Inverse Functions Lety = f ix)  = nix + b,
m ¥= 0.
(a) Writing to Learn Give a convincing argument th a t/is  a 
one-to-one function.

(b ) Find a formula for the inverse off. How are the slopes o f f  
and f~'  related?

(c) If the graphs of two functions are parallel lines with a 
nonzero slope, what can you say about the graphs of the inverses 
of the functions?

(d) If the graphs of two functions are perpendicular lines with a 
nonzero slope, what can you say about the graphs of the inverses 
of the functions?

Standardized Test Questions
You should solve the following problems without using a 
graphing calculator.

52. True or False The function displayed in the graph below is 
one-to-one. Justify your answer.

53. True or False If ( / o g)(x) =  x, then g is the inverse function 
off. Justify your answer.

In Exercises 54 and 55, use the function/(x) =  3 — In (x + 2).

54. Multiple Choice Which of the following is the domain of /?  
(A) x  + - 2  (B) ( - o o ,  oo) (C) ( - 2 ,  oo)

(D) [—1.9, oo) (E) (0, oo)

55. Multiple Choice Which of the following is the range of /?
(A) (-oo, oo) 

(D) (0, oo)

(B )(-oo,0) 

(E) (0, 5.3)

(C) ( -2 ,  oo)

56. Multiple Choice Which of the following is the inverse of
f ( x)  = 3x -  2?

(A) g(x) = 

(D) g(x) =

1
3x -  2 
x — 2

(B) g(x) = x

(E)g(x) = ^ 2 .

(C) g(x) =  3x — 2

57. Multiple Choice Which of the following is a solution of the 
equation 2 — 3“* =  —1?

(A) x =  —2 (B) x = — 1 (C) x = 0

(D) x = 1 (E) There are no solutions.

Exploration
58. Supporting the Quotient Rule Lety, = In (x /a), y2 =

In x, y3 = y2 — yt, and y4 = eyK
(a) Graph v, and y2 for a = 2,3,  4, and 5. How are the graphs of 
y x and y2 related?

(b) Graph y3 for a = 2,3,  4, and 5. Describe the graphs.
(c) Graph y4 for a = 2, 3, 4, and 5. Compare the graphs to the 
graph of y = a.
(d) Use eyi = eŷ ~y' = a to solve foryj.

Extending the Ideas
59. One-to-One Functions If /  is a one-to-one function, prove 

that g(x) =  —fix )  is also one-to-one.

60. One-to-One Functions If f  is a one-to-one function and/(x) 
is never zero, prove that g{x) = 1 / f ix)  is also one-to-one.

61. Domain and Range Suppose that a + 0, b + 1, and b > 0. 
Determine the domain and range of the function.

(a) y = a(bc~x) +  d (b) y = a logfc (x — c) + d
62. Group Activity Inverse Functions

ax + b
Let f i x )  =

cx + d ’
c + 0, ad — be + 0.

(a) Writing to Learn Give a convincing argument that f  is 
one-to-one.

(b) Find a formula for the inverse off.
(c) Find the horizontal and vertical asymptotes off.
(d) Find the horizontal and vertical asymptotes o f / -1. How are 
they related to those o f /?
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Trigonometric Functions1.6
What you'll learn about

• Radian Measure

• Graphs of Trigonometric 
Functions

• Periodicity

• Even and Odd Trigonometric 
Functions

• Transformations of 
Trigonometric Graphs

• Inverse Trigonometric 
Functions

. . .  and why

Trigonometric functions can be 
used to model periodic behavior 
and applications such as musical 
notes.

Figure 1.40 The radian measure of angle 
ACB is the length d of arc AB on the unit 
circle centered at C. The value of 6 can be 
found from any other circle, however, as 
the ratio s/r.

Figure 1.41 An angle 6 in standard 
position.

Radian Measure
The radian measure of the angle ACB  at the center of the unit circle (Figure 1.40) equals 
the length of the arc that ACB cuts from the unit circle.

EXAMPLE 1 Finding Arc Length
Find the length of an arc subtended on a circle of radius 3 by a central angle of measure 
27t/3.

SOLUTION

According to Figure 1.40, if 5 is the length of the arc, then

s = rd  = 3(277/3) =  277. Now try  Exercise 1.

When an angle of measure 6 is placed in standard position at the center of a circle of 
radius r (Figure 1.41), the six basic trigonometric functions of 9 are defined as follows:

sine: sin d = —

cosine: cos ti =

tangent: tan 6 = —

_ 1  
r 
x_ 
r

_ y
X

cosecant: csc ( 

secant: sec i 

cotangent: cot i

r

y

L
x
x_
y

Graphs of Trigonometric Functions
When we graph trigonometric functions in the coordinate plane, we usually denote the in­
dependent variable (radians) by x instead of 6 . Figure 1.42 on the next page shows sketches 
of the six trigonometric functions. It is a good exercise for you to compare these with what 
you see in a grapher viewing window. (Some graphers have a “trig viewing window.”)

EXPLORATION 1 Unwrapping Trigonom etric  Functions

Set your grapher in radian mode, parametric mode, and simultaneous mode (all 
three). Enter the parametric equations

x, =  cos t, y x =  sin t and x2 = t, y2 = sin t.

1 Graph for 0 s  <  277 in the window [—1.5, 277] by [—2.5, 2.5], Describe the 
two curves. (You may wish to make the viewing window square.)

2. Use trace to compare the v-values of the two curves.

3. Repeat part 2 in the window [—1.5, 477] by [ — 5, 5], using the parameter interval 
0 <  t <  477.

4. Let y2 =  cos t. Use trace to compare the x-values of curve 1 (the unit circle) 
with the y -values of curve 2 using the parameter intervals [0, 277] and [0, 477].

5. Set y2 =  tan /, csc t, sec l, and cot t. Graph each in the window [ — 1.5, 277] by 
[—2.5, 2.5] using the interval 0 s t s  2 77. How is a y-value of curve 2 related to 
the corresponding point on curve 1? (Use trace to explore the curves.)
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Angle Convention: Use Radians

From now on in this book it is assumed 
that all angles are measured in radians 
unless degrees or some other unit is 
stated explicitly. When we talk about 
the angle t t / 3 , we mean t t / 3  radians 
(which is 60°), not t t / 3  degrees. When 
you do calculus, keep your calculator in 
radian mode.

Periods of Trigonometric 
Functions

Period t t : tan (x + 77) = tan x
cot (x+ t t )  = cot x 

Period 2 t t : sin (x + 2 t t )  = sin x 
cos (x + 27r) = cos x 
sec (x + 27r) = sec x 
csc (x + 27t) = CSC x

=  cosx

Domain: -co<x<<x 
Range: - l < y <  1 
Period: 2tt

(a)
y

Range: y <  -1 and y >  1 
Period: 2tt

(d)

Domain: - c o < ; t < c o  

Range: -1 <y <  1 
Period: 2t t

(b)

y

Domain: x ±  0, ±% ± 2 ir , . . .  
Range: y <  -I and y >  1 
Period: 2tt

(e)

Range: - c o  < y  <  co 

Period: t t

(c)

y

Domain: xi=0, ± tt, ±2tt, . 
Range: - o o < y <  00 

Period: it
(f)

Figure 1.42 Graphs of the (a) cosine, (b) sine, (c) tangent, (d) secant, (e) cosecant, and
(f) cotangent functions using radian measure.

Periodicity
When an angle of measure 9 and an angle of measure 9 +  2 t t  are in standard position, 
their terminal rays coincide. The two angles therefore have the same trigonometric func­
tion values:

cos (9 +  277) =  cos 9 sin (9 +  277") =  sin 9 tan (9 +  2 t t )  =  tan 9
( 1)sec (9 +  2 t t )  =  sec 9 csc (9 +  2 t t )  =  csc 9 cot (9 +  2 t t )  =  cot 9

Similarly, cos (9 — 2 t t )  =  cos 9 , sin (9 — 277) =  sin 9 , and so on.
We see the values of the trigonometric functions repeat at regular intervals. We 

describe this behavior by saying that the six basic trigonometric functions are periodic.

DEFINITION Periodic Function, Period

A function/(x) is periodic if there is a positive number p  such th a t/(x  +  p) = /(x ) 
for every value of x. The smallest such value of p  is the period of/.

As we can see in Figure 1.42, the functions cos x, sin x, sec x, and csc x are periodic 
with period 277. The functions tan x and cot x are periodic with period 77.

Even and Odd Trigonometric Functions
The graphs in Figure 1.42 suggest that cos x and sec x are even functions because their graphs 
are symmetric about the y-axis. The other four basic trigonometric functions are odd.
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y

Figure 1.43 Angles of opposite sign. 
(Example 2)

y

4

(4. -3)

Figure 1.44 The angle 8 in standard 
position. (Example 3)

EXAMPLE 2 Confirm ing Even and Odd
Show that cosine is an even function and sine is odd.

SOLUTION

From Figure 1.43 it follows that

X — v
cos (—0) =  — = cos 6, sin (—0) = ------ =  —sm 9,

r r

so cosine is an even function and sine is odd. Now try  Exercise 5.

EXAMPLE 3  Finding Trigonom etric  Values
Find all the trigonometric values of 6 if sin 9 =  —3 /5  and tan 9 <  0.

SOLUTION

The angle 9 is in the fourth quadrant, as shown in Figure 1.44, because its sine and tangent 
are negative. From this figure we can read that cos 0 =  4 /5 , tan 9 = — 3 /4 , csc 9 =  —5/3 , 
sec 9 = 5 /4 , and cot 9 =  —4 /3 . Now try  Exercise 9.

Transformations of Trigonometric Graphs
The rules for shifting, stretching, shrinking, and reflecting the graph of a function apply 
to the trigonometric functions. The following diagram will remind you of the controlling 
parameters.

'Vertical shiftVertical stretch or shrink;-, 
reflection about jc-axis

Horizontal stretch or shrink; - 
reflection about y-axis

y = cif(b(x + c)) + d

■ Horizontal shift

The general sine function or sinusoid can be written in the form

f ( x )  = A  sin D,

where |A| is the amplitude, |fi| is the period, C is the horizontal shift, and D is the vertical 
shift.

EXAMPLE 4  Graphing a Trigonom etric  Function
Determine the (a) period, (b) domain, (c) range, and (d) draw the graph of the function 
y = 3 cos (2x — 7r) +  1.

SOLUTION

We can rewrite the function in the form

y = 3 cos 2 1 * - y +  1.

(a) The period is given by 2tt/B, where 2t t/B = 2. The period is tt.

(b) The domain is (—o°, <»).

(c) The graph is a basic cosine curve with amplitude 3 that has been shifted up 
1 unit. Thus, the range is [ — 2, 4].

continued
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[—277, 277] by [-4 , 6]

Figure 1.45 The graph of 
y = 3 cos(2x -  77) + 1 (blue) and the 
graph of y = cos x  (red). (Example 4)

(d) The graph has been shifted to the right 77/2 units. The graph is shown in 
Figure 1.45 together with the graph of y  =  co sx  Notice that four periods of 
y  = 3 cos (2x — 77) +  1 are drawn in this window. Now try Exercise 13.

Musical notes are pressure waves in the air. The wave behavior can be modeled with 
great accuracy by general sine curves. Devices called Calculator Based Laboratory™ (CBL) 
systems can record these waves with the aid of a microphone. The data in Table 1.18 give 
pressure displacement versus time in seconds of a musical note produced by a tuning fork 
and recorded with a CBL system.

Table 1.18 Tuning Fork Data

Time Pressure Time Pressure Time Pressuri

0.00091 -0.080 0.00271 -0.141 0.00453 0.749
0.00108 0.200 0.00289 -0.309 0.00471 0.581
0.00125 0.480 0.00307 -0.348 0.00489 0.346
0.00144 0.693 0.00325 -0.248 0.00507 0.077
0.00162 0.816 0.00344 -0.041 0.00525 -0.164
0.00180 0.844 0.00362 0.217 0.00543 -0.320
0.00198 0.771 0.00379 0.480 0.00562 -0.354
0.00216 0.603 0.00398 0.681 0.00579 -0.248
0.00234 0.368 0.00416 0.810 0.00598 -0.035
0.00253 0.099 0.00435 0.827

[0. 0.0062] by [-0 .5 , 1]

Figure 1.46 A sinusoidal regression 
model for the tuning fork data in Table 1.18. 
(Example 5)

EXAMPLE 5  Finding the Frequency of a Musical Note
Consider the tuning fork data in Table 1.18.

(a) Find a sinusoidal regression equation (general sine curve) for the data and super­
impose its graph on a scatter plot of the data.

(b) The frequency of a musical note, or wave, is measured in cycles per second, or 
hertz (1 Hz = 1 cycle per second). The frequency is the reciprocal of the period 
of the wave, which is measured in seconds per cycle. Estimate the frequency of 
the note produced by the tuning fork.

SOLUTION
(a) The sinusoidal regression equation produced by our calculator is approximately

y = 0.6 sin (2488.6x  — 2.832) +  0.266.

Figure 1.46 shows its graph together with a scatter plot of the tuning fork data.

. . .  277 . . . 2488.6 , TT
(b) The period i s  sec, so the frequency i s  ~  396 Hz.

F 2488.6 277

In terp re ta tio n  The tuning fork is vibrating at a frequency of about 396 Hz. On the 
pure tone scale, this is the note G above middle C. It is a few cycles per second different 
from the frequency of the G we hear on a piano’s tempered scale, 392 Hz.

Now try Exercise 23.

Inverse Trigonometric Functions
None of the six basic trigonometric functions graphed in Figure 1.42 is one-to-one. These 
functions do not have inverses. However, in each case the domain can be restricted to pro­
duce a new function that does have an inverse, as illustrated in Example 6.
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X  = t ,  y = sin t ,  -  j  <  /  <  y

[-3, 3] by [-2, 2] 

(a)

x = sin t ,  y = r, -  j  <  t  <  ™

[-3, 3] by [-2, 2] 

(b)

Figure 1.47 (a) A restricted sine 
function and (b) its inverse. (Example 6)

EXAMPLE 6  R estricting the  Dom ain of the Sine
Show that the function y  =  sin x, — t t /2  <  x <  77/ 2 , is one-to-one, and graph its inverse. 

SOLUTION

Figure 1.47a shows the graph of this restricted sine function using the parametric equations

77 77Xj =  t, y, =  sm t,

This restricted sine function is one-to-one because it does not repeat any output values. 
It therefore has an inverse, which we graph in Figure 1.47b by interchanging the or­
dered pairs using the parametric equations

77 77
x2 =  sin t, y2 =  t, —— <  t <  — . Now try Exercise 25.

The inverse of the restricted sine function of Example 6 is called the inverse sine func­
tion. The inverse sine of x is the angle whose sine is x. It is denoted by sin- 1 x or arcsin x. 
Either notation is read “arcsine of x” or "the inverse sine of x.”

The domains of the other basic trigonometric functions can also be restricted to pro­
duce a function with an inverse. The domains and ranges of the resulting inverse functions 
become parts of their definitions.

DEFINITIONS Inverse Trigonom etric  Functions

Function Domain Range

y  — cos- 1 x — 1 <  x <  1 0 ^  y  £  77

y  = sin-1 x VIVIT 77 77----- <  y <  —
2 2

y =  tan-1 x — 00 <  x <  00 77 77

~ Y < y < J

y  = sec-1 x |x | 1 0 < y < 7 7 , y ^ y

y  =  csc-1 x |x | >  1
77 77 , „

II 0 O
1 — 00 <  X <  00 0 <  y <  77

The graphs of the six inverse trigonometric functions are shown in Figure 1.48.

EXAMPLE 7 Finding Angles in Degrees and Radians
Find the measure of cos-1 (—0.5) in degrees and radians.

SOLUTION

Put the calculator in degree mode and enter cos-1 (—0.5). The calculator returns 120, 
which means 120 degrees. Now put the calculator in radian mode and enter cos-1 (—0.5). 
The calculator returns 2.094395102, which is the measure of the angle in radians. You 
can check that 277/3 =  2.094395102. Now try Exercise 27.
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Domain: -1 < x < 1 

Range: 0 < y < t t

Domain: -1 < x<  1 

Range:

(a)

Domain: -oo  < x  < oo
TT

2
n  TT _  . TTRange: -  ~ < y  < ;

Domain: x < -1 or x > 1 

Range:

(d)

Domain: x < -1 or x > 1 

Range: ~ < y < ^ , y * 0

(e)

Domain: -oo  < x < oo 

Range: 0 < y  < t t

Figure 1.48 Graphs of (a) y = cos 1 x, (b) y = sin 1 x, (c) y = tan 1 x, (d) y = sec 1 x, (e) y = csc 1 x, and (f) y = cot 1 x.

EXAMPLE 8  Using the  Inverse Trigonom etric  Functions

Solve for x.

(a) sin x =  0.7 in 0 ^  x  < 2 t t

(b) tan x =  - 2  in -oo <  x <  co

SOLUTION

(a) Notice that x  = sin-1 (0.7) ~  0.775 is in the first quadrant, so 0.775 is one solu­
tion of this equation. The angle tt — x is in the second quadrant and has sine
equal to 0.7. Thus two solutions in this interval are

sin-1 (0.7) ~  0.775 and tt — sin-1 (0.7) =  2.366.

(b) The angle x =  tan-1 (—2) =  —1.107 is in the fourth quadrant and is the only so­
lution to this equation in the interval —7r/2 <  x <  77/2 where tan x is one-to- 
one. Since tan x is periodic with period 7r, the solutions to this equation are of 
the form

tan 1 (—2) +  k.Tr = -1 .1 0 7  +  kTT

where k is any integer. Now tr y  Exercise 31.
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Quick R eview  1.6 (For help, go to Sections 1 .2  and  1 .6 .)

In Exercises 1^1, convert from radians to degrees or degrees to radians.

1. 77-/3 2. -2 .5  3. -4 0 ° 4. 45°

In Exercises 5-7, solve the equation graphically in the given interval. 

5. sin* = 0.6, 0 <  x <  27r 6. cos x = — 0.4, 0 <  x <  27t

_ , tt 3-rr7. tan x = 1 ,  <x  <  —
2 2

8. Show that f (x)  = 2x2 — 3 is an even function. Explain why its 
graph is symmetric about the y-axis.

9. Show that f ( x)  = x 3 — 3.r is an odd function. Explain why its 
graph is symmetric about the origin.

10. Give one way to restrict the domain of the function/(x) = xA -  2 
to make the resulting function one-to-one.

Section 1.6 Exercises

In Exercises 1-4, the angle lies at the center of a circle and subtends 
an arc of the circle. Find the missing angle measure, circle radius, or 
arc length.

Angle
1. 577-/8

2. 175°

3. ?

Radius
2
?

14

Arc Length
?

10

7

377-/2

In Exercises 5-8, determine if the function is even or odd.

5. secant 6. tangent

7. cosecant 8. cotangent

In Exercises 9 and 10, find all the trigonometric values of 6 with the 
given conditions.

9. cos 6 = —— , 
17

sin 0 >  0

10. tan 6 = — 1, sin 9 <  0
In Exercises 11-14, determine (a) the period, (b) the domain,
(c) the range, and (d) draw the graph of the function.
11. y = 3 csc (3x + 77) — 2 12. y = 2 sin [Ax + 77) + 3
13. y =  — 3 tan (3x + 77) + 2

14. y = 2 sin (2x +

23. Group Activity A musical note like that produced with a tun­
ing fork or pitch meter is a pressure wave. Table 1.19 gives fre­
quencies (in Hz) of musical notes on the tempered scale. The 
pressure versus time tuning fork data in Table 1.20 were col­
lected using a CBL™ and a microphone.

Table 1.19

In Exercises 15 and 16, choose an appropriate viewing window to 
display two complete periods of each trigonometric function in 
radian mode.

15. (a) y = sec x  (b) y = csc x  (c) y = cot x
16. (a) y = sin x  (b) y  = cos x  (c) y  = tan x

In Exercises 17-22, specify (a) the period, (b) the amplitude, and
(c) identify the viewing window that is shown.

17. y  — 1.5 sin 2x

Frequencies of Notes
Note Frequency (Hz)

c 262
C« or Db 277

D 294
D# or Eb 311

E 330
F 349

F“ or Gb 370
G 392

G# or Ab 415
A 440

A* or Bb 466
B 494

C (next octave) 524
Source: CBL™ System Experimental Workbook, 
Texas Instruments, Inc., 1994.
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Table 1.20 Tuning Fork Data

Time (s) Pressure Time (s) Pressure

0.0002368 1.29021 0.0049024 -1.06632
0.0005664 1.50851 0.0051520 0.09235
0.0008256 1.51971 0.0054112 1.44694
0.0010752 1.51411 0.0056608 1.51411
0.0013344 1.47493 0.0059200 1.51971
0.0015840 0.45619 0.0061696 1.51411
0.0018432 -0.89280 0.0064288 1.43015
0.0020928 -1.51412 0.0066784 0.19871
0.0023520 -1.15588 0.0069408 -1.06072
0.0026016 -0.04758 0.0071904 -1.51412
0.0028640 1.36858 0.0074496 -0.97116
0.0031136 1.50851 0.0076992 0.23229
0.0033728 1.51971 0.0079584 1.46933
0.0036224 1.51411 0.0082080 1.51411
0.0038816 1.45813 0.0084672 1.51971
0.0041312 0.32185 0.0087168 1.50851
0.0043904 -0.97676 0.0089792 1.36298
0.0046400 -1.51971

(a) Find a sinusoidal regression equation for the data in Table
1.20 and superimpose its graph on a scatter plot of the data.

(b) Determine the frequency of and identify the musical note 
produced by the tuning fork.

24. Temperature Data Table 1.21 gives the average monthly tem­
peratures for St. Louis for a 12-month period starting with Janu­
ary. Model the monthly temperature with an equation of the form

y  =  a sin [b(t — h)] + k,
y in degrees Fahrenheit, t in months, as follows:

Table 1.21 Temperature Data for St. Louis
Time (months) Temperature (°F)

1 34
2 30
3 39
4 44
5 58
6 67
7 78
8 80
9 72

10 63
11 51
12 40

(a) Find the value of b assuming that the period is 12 months.

(b) How is the amplitude a related to the difference 80° — 30°?

(c) Use the information in (b) to find k.

(d) Find /?, and write an equation for y.
(e) Superimpose a graph of y on a scatter plot of the data.

In Exercises 25-26, show that the function is one-to-one, and graph 
its inverse.

25. y = cos x, 0 <  x  £  tt
7T ,  7726. y =  tan x ,  <  x < —

7 2 2

In Exercises 27-30, give the measure of the angle in radians and de­
grees. Give exact answers whenever possible.

27. sin -1 (0.5) ^28. sin” 1 -

29. tan” 1 ( -5 ) 30. cos-' (0.7)

In Exercises 31-36, solve the equation in the specified interval.

31. tan x = 2.5, 0 <  x  <  27r
32. cos x = —0.7, 2t7 <  x <  47t
33. csc x  = 2, 0 <  x <  2ir 34. sec x = — 3, —it £  x < tt
35. sin.x = -0.5, — co <  * <  °° 36. cot x = — 1, — oo <  * <  °°

In Exercises 37^-0, use the given information to find the values of 
the six trigonometric functions at the angle 9. Give exact answers.

, i7 1 38- s = “ " ( - i
39. Lhe point P(—3, 4) is on the terminal side of 6.
40. The point P(—2, 2) is on the terminal side of 6.

In Exercises 41 and 42, evaluate the expression.

37. d =  sin 1 —

41. sin ( cos ' I —— 42. tan ( sin 11 —

43. Temperatures in Fairbanks, Alaska Find the (a) amplitude,
(b) period, (c) horizontal shift, and (d) vertical shift of the model 
used in the figure below, (e) Then write the equation for the model.

^  ^  ^  ^  c p  OcV ^

Normal mean air temperature for Fairbanks, Alaska, plotted as data 
points (red). The approximating sine function f(x)  is drawn in blue. 
Source: "Is the Curve of Temperature Variation a Sine Curve?" by B. M. Lando 
and C. A. Lando, The Mathematics Teacher, 7.6, Fig. 2, p. 535 (Sept. 1977).

44. Temperatures in Fairbanks, Alaska Use the equation of 
Exercise 43 to approximate the answers to the following ques­
tions about the temperatures in Fairbanks, Alaska, shown in the 
figure in Exercise 43. Assume that the year has 365 days.

(a) What are the highest and lowest mean daily temperatures?
(b) What is the average of the highest and lowest mean daily tem­
peratures? Why is this average the vertical shift of the function?
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45. Even-Odd

(a) Show that cot x is an odd function of x.
(b) Show that the quotient of an even function and an odd 
function is an odd function.

46. Even-Odd

(a) Show that csc x is an odd function of x.
(b) Show that the reciprocal of an odd function is odd.

47. Even-Odd Show that the product of an even function and an 
odd function is an odd function.

48. Finding the Period Give a convincing argument that the pe­
riod of tan x  is 77.

49. Sinusoidal Regression Table 1.22 gives the values of the 
function

f(x) = a sin (bx + c) + d 
accurate to two decimals.

1 Table 1.221 Values of a Function
X fix)

1 3.42
2 0.73
3 0.12
4 2.16
5 4.97
6 5.97

(a) Find a sinusoidal regression equation for the data.

(b) Rewrite the equation with a, b, c, and d rounded to the near­
est integer.

Standardized Test Questions
IT You may use a graphing calculator to solve the following 

problems.

50. True or False The period of y =  sin(x/2) is tt. Justify your 
answer.

51. True or False The amplitude of y = \  cos x is 1. Justify your 

answer.

In Exercises 52-54,/(x ) =  2 cos(4x + t t )  — 1.

52. Multiple Choice Which of the following is the domain of /? 

(A) [-77, 77] (B) [—3, 1] (C) [—1,4]
(D) (-ex., oo) (E) X *  0

53. Multiple Choice Which of the following is the range of /? 
(A) ( -3 ,1 )  (B) [—3, 1] (C) (—1, 4)
(D) [—1,4] (E) (-oo, oo)

54. Multiple Choice Which of the following is the period o f /?  

(A) 477 (B) 377 (C) 277 (D) 77 (E) 77/2

55. Multiple Choice Which of the following is the measure of 
tan~*(—V 3) in degrees?

(A )-6 0 ° (B) —30° (C)30° (D) 60° (E) 120°

Exploration
56. Trigonometric Identities Let f(x) = sin x + cos x.

(a) Graph y = fix). Describe the graph.

(b) Use the graph to identify the amplitude, period, horizontal 
shift, and vertical shift.

(c) Use the formula

sin a  cos (3 + cos a sin p = sin (a +  /3) 

for the sine of the sum of two angles to confirm your answers.

Extending the Ideas
57. Exploration Let v = sin (ax) +  cos (ax).

Use the symbolic manipulator of a computer algebra system 
(CAS) to help you with the following:

(a) Express y  as a sinusoid for a = 2,3, 4, and 5.

(b) Conjecture another formula for y for a equal to any positive 
integer n.

(c) Check your conjecture with a CAS.

(d) Use the formula for the sine of the sum of two angles 
(see Exercise 56c) to confirm your conjecture.

58. Exploration Lety =  a sinx +  b cosx.

Use the symbolic manipulator of a computer algebra system 
(CAS) to help you with the following:

(a) Express y  as a sinusoid for the following pairs of values:
a =  2, b = 1; a =  1, b =  2; a = 5, b = 2; a = 2, b = 5;
a =  3, b = 4.

(b) Conjecture another formula for y for any pair of positive 
integers. Try other values if necessary.

(c) Check your conjecture with a CAS.
(d) Use the following formulas for the sine or cosine of a sum or 
difference of two angles to confirm your conjecture.

sin a  cos (3 ±  cos a  sin (i =  sin (a ±  /3) 

cos a  cos p  ±  sin a  sin j3 = cos (a T /3)

In Exercises 59 and 60, show that the function is periodic and find its 
period.

59. y = sin3x 60. y = |tanx|
In Exercises 61 and 62, graph one period of the function.

61. f (x)  = sin (60x)
62. f (x)  = cos (6077x)
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Quick Quiz for AP* Preparation: Sections 1.4-1.6

You should solve the following problems without using a 
graphing calculator.

1. Multiple Choice Which of the following is the domain of
f{x) = - lo g 2(x + 3)?
(A) ( — 00,00) (B)(-oo, 3) (C ) ( -3 ,  00)

(D) [ -3 , oo) (E) (-oo, 3]

2. Multiple Choice Which of the following is the range of 
f{x) = 5 cos(x + ir) +  3?
(A) ( - o o ,  oo) (B) [2, 4] (C) [ -8 ,  2]

2 8/
5 ’ 5

(D) [ -2 , 8] (E)

3. Multiple Choice Which of the following gives the solution of
3tt

tan .x =  — 1 in 17 <  x  <  — ?
2

(A) - f (B)
77 377"

( C ) y  (D )^p (E)
5-77

4. Free Response Let /(x) =  5x -  3.

(a) Find the inverse g off.
(b) Compute f  °gix). Show your work.

(c) Compute g o fix). Show your work.

Chapter 1 Key Terms

absolute value function (p. 17) 
base a logarithm function (p. 40) 
boundary of an interval (p. 13) 
boundary points (p. 13) 
change of base formula (p. 42) 
closed interval (p. 13) 
common logarithm function (p. 41) 
composing (p. 18) 
composite function (p. 17) 
compounded continuously (p. 25) 
cosecant function (p. 46) 
cosine function (p. 46) 
cotangent function (p. 46) 
dependent variable (p. 12) 
domain (p. 12) 
even function (p. 15) 
exponential decay (p. 24) 
exponential function base a (p. 22) 
exponential growth (p. 24) 
function (p. 12) 
general linear equation (p. 5) 
graph of a function (p. 13) 
graph of a relation (p. 30) 
grapher failure (p. 15) 
half-life (p. 24) 
half-open interval (p. 13) 
identity function (p. 38) 
increments (p. 3)

independent variable (p. 12)
initial point of parametrized curve (p. 30)
interior of an interval (p. 13)
interior points of an interval (p. 13)
inverse cosecant function (p. 50)
inverse cosine function (p. 50)
inverse cotangent function (p. 50)
inverse function (p. 38)
inverse properties for ax and logfl x (p. 41)
inverse secant function (p. 50)
inverse sine function (p. 50)
inverse tangent function (p. 50)
linear regression (p. 7)
natural domain (p. 13)
natural logarithm function (p. 41)
odd function (p. 15)
one-to-one function (p. 37)
open interval (p. 13)
parallel lines (p. 4)
parameter (p. 30)
parameter interval (p. 30)
parametric curve (p. 30)
parametric equations (p. 30)
parametrization of a curve (p. 30)
parametrize (p. 30)
period of a function (p. 47)
periodic function (p. 47)
perpendicular lines (p. 4)

piecewise defined function (p. 16) 
point-slope equation (p. 4) 
power rule for logarithms (p. 41) 
product rule for logarithms (p. 41) 
quotient rule for logarithms (p. 41) 
radian measure (p. 46) 
range (p. 12) 
regression analysis (p. 7) 
regression curve (p. 7) 
relation (p. 30) 
rise (p. 3)
rules for exponents (p. 23) 
run (p. 3) 
scatter plot (p. 7) 
secant function (p. 46) 
sine function (p. 46) 
sinusoid (p. 48) 
sinusoidal regression (p. 49) 
slope (p. 4)
slope-intercept equation (p. 5)
symmetry about the origin (p. 15)
symmetry about the y-axis (p. 15)
tangent function (p. 46)
terminal point of parametrized curve (p. 30)
witch of Agnesi (p. 33)
x-intercept (p. 5)
y-intercept (p. 5)
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Chapter 1 Review Exercises

The collection of exercises marked in red could be used as a chapter 
test.

In Exercises 1-14, write an equation for the specified line.
1. through (1, - 6 )  with slope 3

2. through (—1,2) with slope —1/2

3. the vertical line through (0, —3)

4. through (—3, 6) and (1, -2 )

5. the horizontal line through (0, 2)

6. through (3, 3) and (—2, 5)

7. with slope —3 and y-intercept 3

8. through (3, 1) and parallel to 2x — y = —2

9. through (4, —12) and parallel to 4x + 3y =  12

10. through (—2, —3) and perpendicular to 3x — 5y =  1

11. through (—1, 2) and perpendicular to — x +  —y = 1

12. with x-intercept 3 and y-intercept - 5

13. the line y = fix) ,  where /  has the following values:

In Exercises 39 and 40, write a piecewise formula for the function.

40. y

- 2  2 4

f i x ) 4 2 1

14. through (4, —2) with x-intercept —3

In Exercises 15-18, determine whether the graph of the function is 
symmetric about the y-axis, the origin, or neither.

15. y = x ’/5 16. y = x2/5

17. y =  x 2 -  2x -  1 18. y =  e“*2

In Exercises 19-26, determine whether the function is even, odd, or 
neither.

19. y =  x 2 + i 20. y =

IIHn

I — cos X 22. y =

IIrn<N X4 + 1 24.
x3' -  2x y =

25. y = x + cos x 26. y =

In Exercises 27-38, find the (a) domain and
the function.

II x| —2 28. y =
29. y = V l6  — x2 30. y =
31. y =  2e~x -  3 32. y =
33. y = 2 sin (3x + tt) — 1 34. y =

35. y  = In (x — 3) +  1 36. y =

IIPS

V ?
- 4  < x  <  0 

0 < x < 4

—x — 2, —2 < x <  - 1

II00 x,
—x  + 2,

- 1  < x < 1 
1 < x < 2

In Exercises 41 and 42, find
( a ) ( /o g ) ( —1) (b) ig o/)(2) (c )(/o /)(x )  id)(gog)(x)

41. fix)  = —, gix) = - - J --
x  V x  +  2

42. f{x)  =  2 — x, gix) = V x  +  1

In Exercises 43 and 44, (a) write a formula for f  o g and g o f  and 
find the (b) domain and (c) range of each.

43. f (x)  = 2 — x2, g(x) = V x + 2

44. f (x)  = V x, g{x) = V 1 -  x

In Exercises 45^18, a parametrization is given for a curve.

(a) Graph the curve. Identify the initial and terminal points, if 
any. Indicate the direction in which the curve is traced.

(b) Find a Cartesian equation for a curve that contains the pa­
rametrized curve. What portion of the graph of the Cartesian 
equation is traced by the parametrized curve?

45. x = 5 cos t, y  =  2 sin t, 0 < t < l T r

46. x =  4 cos t, y  = 4 sin t, 7i/2 <  t  <  37t/2

47. x = 2 -  t, y  = 11 — 2?, - 2  <  t  <  4

48. x = 1 + t, y  =  V 4  -  21, t  <  2

In Exercises 49-52, give a parametrization for the curve.

49. the line segment with endpoints (—2, 5) and (4, 3)
50. the line through ( — 3, —2) and (4, — 1)

51. the ray with initial point (2, 5) that passes through (— 1, 0)
52. y = .v (x -  4), x  £  2

G roup Activity In Exercises 53 and 54, do the following.

(a) Find /^ ' and show that i f ° f ~ l)(x) =  ( / “ * °/)(x) =  x.
(b) Graph /  and f ~ 1 in the same viewing window.

53. f i x )  = 2 -  3x 54. f ix )  = (x +  2)2, x >  - 2

In Exercises 55 and 56, find the measure of the angle in radians and 
degrees.

55. sin_i (0.6) 56. tan - 1  (—2.3)

57. Find the six trigonometric values of 9 = cos- 1  (3/7). Give exact 
answers.

58. Solve the equation sin x  =  —0.2 in the following intervals.
(a) 0 <  x <  2ir (b) —oo <  x <  oo

59. Solve for x: e~02x =  4
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60. The graph of /  is shown. Draw 
the graph of each function.

(a ) y = f i ~ x )

(b) y = - f{x)

(c)y = ~ 2 f i x +  1) +1

(d)y  = 3f i x  -  2) - 2

61. A portion of the graph of a function 
defined on [ -3 , 3] is shown. 
Complete the graph assuming that 
the function is

(a) even.

(b) odd.

62. Depreciation Smith Hauling purchased an 18-wheel truck for 
$100,000. The truck depreciates at the constant rate of $10,000 
per year for 10 years.

(a) Write an expression that gives the value y after x  years.

(b) When is the value of the truck $55,000?
63. Drug Absorption A drug is administered intravenously for 

pain. The function

/(f) = 90 -  52 In ( 1 + 0 ,  0 < f < 4
gives the number of units of the drug in the body after t hours.

(a) What was the initial number of units of the drug administered?

(b) How much is present after 2 hours? (c) Draw the graph off.
64. Finding Time If Joenita invests $1500 in a retirement account 

that earns 8% compounded annually, how long will it take this 
single payment to grow to $5000?

65. Guppy Population The number of guppies in Susan’s 
aquarium doubles every day. There are four guppies initially.

(a) Write the number of guppies as a function of time t.
(b) How many guppies were present after 4 days? after 1 week?

(c) When will there be 2000 guppies?

(d) Writing to Learn Give reasons why this might not be a 
good model for the growth of Susan’s guppy population.

66. Doctoral Degrees Table 1.23 shows the number of doctoral 
degrees earned by Hispanic students for several years. Let x = 0 
represent 1980, x = 1 represent 1981, and so forth.

1 Table 1.231 Doctorates Earned by Hispanic 
Americans

Number of DegreesYear

1981 456
1985 677
1990 780
1995 984
2000 1305

(a) Find a linear regression equation for the data and superim­
pose its graph on a scatter plot of the data.

(b) Use the regression equation to predict the number of doctoral 
degrees that will be earned by Hispanic Americans in 2002. How 
close is the estimate to the actual number in 2002 of 1432?

(c) Writing to Learn Find the slope of the regression line. 
What does the slope represent?

67. Population of New York Table 1.24 shows the population of 
New York State for several years. Let x  =  0 represent 1980, x  = 1 
represent 1981, and so forth.

Table 1.24 Population of New York State
Year Population (thousands)

1980
1990
1995
1998
1999
2000

17,558
17,991
18,524
18,756
18,883
18,977

Source: Statistical Abstract of the United States, 2004-2005.

(a) Find the exponential regression equation for the data and 
superimpose its graph on a scatter plot of the data.

(b) Use the regression equation to predict the population in 2003. 
How close is the estimate to the actual number in 2003 of 19,190 
thousand?

(c) Use the exponential regression equation to estimate the an­
nual rate of growth of the population of New York State.

AP* Examination Preparation
|t   You may use a graphing calculator to solve the following

problems.

68. Consider the point P i~ 2, 1) and the line L: x + y = 2.
(a) Find the slope of L.
(b) Write an equation for the line through P and parallel to L.
(c) Write an equation for the line through P and perpendicular to L.
(d) What is the x-intercept of L?

69. Letf{x) =  1 — ln(jc — 2).
(a) What is the domain o f /?  (b) What is the range o f /?

(c) What are the x-intercepts of the graph of /?
(d) Find (e) Confirm your answer algebraically in part (d).

70. Let f ix )  = 1 —3 cos(2x).

(a) What is the domain o f /?  (b) What is the range o f /?

(c) What is the period o f /?
(d) I s /a n  even function, odd function, or neither?

(e) Find all the zeros o f / in  t t /2  <  x <  u.

Source: Statistical Abstract o f the United States, 2004-2005.



Limits and 
Continuity

A n Economic Injury Level (EIL) is a measure­
ment of the fewest number of insect pests 
tha t will cause economic damage to a crop 

or forest. It has been estimated tha t m onitoring 
pest populations and establishing EILs can reduce 
pesticide use by 3 0 % -5 0 % .

Accurate population estimates are crucial fo r 
determ ining EILs. A population density of one in­
sect pest can be approximated by

pests per plant, where t  is the number of days 
since initial infestation. What is the rate of change 
of this population density when the population 
density is equal to the EIL of 20 pests per plant? 
Section 2.4 can help answer this question.
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 2.1
What you'll learn about

• Average and Instantaneous 
Speed

• Definition of Limit

• Properties of Limits

• One-sided and Two-sided 
Limits

• Sandwich Theorem 

. . .  and why

Limits can be used to describe 
continuity, the derivative, and the 
integral: the ideas giving the 
foundation of calculus.

Free Fall

Near the surface of the earth, all bodies 
fall with the same constant acceleration. 
The distance a body falls after it is re­
leased from rest is a constant multiple 
of the square of the time fallen. At least, 
that is what happens when a body falls 
in a vacuum, where there is no air to 
slow it down. The square-of-time rule 
also holds for dense, heavy objects like 
rocks, ball bearings, and steel tools dur­
ing the first few seconds of fall through 
air, before the velocity builds up to 
where air resistance begins to matter. 
When air resistance is absent or in­
significant and the only force acting on 
a falling body is the force of gravity, we 
call the way the body falls free fall.

C hapter 2 O v erv iew
The concept of limit is one of the ideas that distinguish calculus from algebra and 
trigonometry.

In this chapter, we show how to define and calculate limits of function values. The cal­
culation rules are straightforward and most of the limits we need can be found by substitu­
tion, graphical investigation, numerical approximation, algebra, or some combination of 
these.

One of the uses of limits is to test functions for continuity. Continuous functions arise 
frequently in scientific work because they model such an enormous range of natural be­
havior. They also have special mathematical properties, not otherwise guaranteed.

Rates of Change and Limits

Average and Instantaneous Speed
A moving body’s average speed during an interval of time is found by dividing the dis­
tance covered by the elapsed time. The unit of measure is length per unit time—kilometers 
per hour, feet per second, or whatever is appropriate to the problem at hand.

EXAMPLE 1 Finding an Average Speed
A rock breaks loose from the top of a tall cliff. What is its average speed during the first 
2 seconds of fall?

SOLUTION

Experiments show that a dense solid object dropped from rest to fall freely near the sur­
face of the earth will fall

y = 16t 2

feet in the first t seconds. The average speed of the rock over any given time interval is 
the distance traveled, Ay, divided by the length of the interval At. For the first 2 seconds 
of fall, from t = 0 to t = 2, we have

Ay 16(2)2 -  16(0)2 ft
—— =      =  32----- . Now try Exercise 1.
At  2 - 0  sec

EXAMPLE 2 Finding an Instantaneous Speed
Find the speed of the rock in Example 1 at the instant t =  2.

SOLUTION

Solve N um erica lly  We can calculate the average speed of the rock over the interval 
from time t = 2 to any slightly later time t =  2 +  h as

Ay 16(2 +  h) 2 -  16(2)2
AJ ~  h ■ (1)

We cannot use this formula to calculate the speed at the exact instant t — 2 because that 
would require taking h = 0, and 0 /0  is undefined. However, we can get a good idea of 
what is happening at 1 =  2 by evaluating the formula at values of h close to 0. When we 
do, we see a clear pattern (Table 2.1 on the next page). As h approaches 0, the average 
speed approaches the limiting value 64 ft/sec.

continued
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Table 2.1 Average Speeds over 
Short Time Intervals Starting at
t =  2

Ay 16(2 +  h)

a7 =

2 _ 16(2)2

Length of 
Time Interval,

h (sec)
1
0.1
0.01
0.001
0.0001
0.00001

h

Average Speed 
for Interval 

Ay/At (ft/sec)
80
65.6
64.16
64.016
64.0016
64.00016

C onfirm  A lgebra ically  If we expand the numerator of Equation 1 and simplify, we 
find that

Ay 16(2 + h)2 -  16(2)2 16(4 + 4h + h2) -  64

a7 = h h

64 h +  16/z2 
h

=  64 +  16/?.

For values of h different from 0, the expressions on the right and left are equivalent and 
the average speed is 64 +  16/i ft/sec. We can now see why the average speed has the 
limiting value 64 +  16(0) =  64 ft/sec as h approaches 0. Now try Exercise 3.

Definition of Limit
As in the preceding example, most limits of interest in the real world can be viewed as nu­
merical limits of values of functions. And this is where a graphing utility and calculus 
come in. A calculator can suggest the limits, and calculus can give the mathematics for 
confirming the limits analytically.

Limits give us a language for describing how the outputs of a function behave as the 
inputs approach some particular value. In Example 2, the average speed was not defined at 
h = 0 but approached the limit 64 as h approached 0. We were able to see this numerically 
and to confirm it algebraically by eliminating h from the denominator. But we cannot al­
ways do that. For instance, we can see both graphically and numerically (Figure 2.1) that 
the values of/(x) =  (sin x)/x  approach 1 as x  approaches 0.

We cannot eliminate the A' from the denominator of (sin x )/x  to confirm the observation 
algebraically. We need to use a theorem about limits to make that confirmation, as you will 
see in Exercise 75.

[-2-71, 2it] by [-1, 2]

(a)

DEFINITION L im it

Assume /  is defined in a neighborhood of c and let c and L be real numbers. The 
function / h a s  lim it L  as x  approaches c if, given any positive number s, there is a 
positive number 8 such that for all x,

0 <  \x — c | <  8 => |f ( x )  — L\ <  e.

We write

l im  f ( x )  =  L.

X R l

- .3 .9 8507
-.2 .99335
-.1 .99833
□ ERROR
.1 .99833
.2 .99335
.3 .98507

Y i B  s i n ( X ) / X

(b)

Figure 2.1 (a) A graph and (b) table of 
values for/(a) = (sin x)/x that suggest the 
limit o f/as x approaches 0 is 1.

The sentence lim ^ ,, f i x )  = L  is read, “The limit o f /  of x  as x  approaches c equals L.” 
The notation means that the values/(x) of the function/approach or equal L as the values 
of x  approach (but do not equal) c. Appendix A3 provides practice applying the definition 
of limit.

We saw in Example 2 that lim /?̂ 0 (64 +  16/i) =  64.
As suggested in Figure 2.1,

sin x
lim
x—>0

=  1.

Figure 2.2 illustrates the fact that the existence of a limit as x —>c never depends on how 
the function may or may not be defined at c. The function/has limit 2 as x—>1 even though 
/ i s  not defined at 1. The function g has limit 2 as x—>l even though g (l) + 2. The function 
h is the only one whose limit as x—>1 equals its value at x  = 1.
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(c) h(x) = x+ 1

Figure 2.2 lim /(x) = lim g(x) = lim h[x) = 2X—>1 X—>1 X—>1

Properties of Limits
By applying six basic facts about limits, we can calculate many unfamiliar limits from 
limits we already know. For instance, from knowing that

lim (k ) =  k L im it of the function w ith  constant value k
x—>c

and

lim (x) =  c, Lim it of the iden tity  function a t x  = cX—

we can calculate the limits of all polynomial and rational functions. The facts are listed in 
Theorem 1.

THEOREM 1 Properties of Limits
If L, M, c, and k are real numbers and

lim /(x )  =  L  and lim g(x) =  M, then
x—>c x—>c

1. Sum Rule: lim ( f{x )  +  g{x)) =  L  +  M
x—*c

The limit of the sum of two functions is the sum of their limits.

2. Difference Rule: lim (f ( x ) — g{x)) =  L — M
>C

The limit of the difference of two functions is the difference of their limits.

3. Product Rule: lim (f ( x ) • "(x)) =  L • M
X—

The limit of a product of two functions is the product of their limits.

4. Constant Multiple Rule: lim ( k ’f ( x ) )  = k ' L
x—>c

The limit of a constant times a function is the constant times the limit of the 
function.

f  ( jc') L
5. Quotient Rule: lim , . =  — , M #  0

J:->£■ g ( X )  M

The limit of a quotient of two functions is the quotient of their limits, provided 
the limit of the denominator is not zero.

continued
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6. Power Rule: If r and s are integers, s + 0, then

lim ( f ( x ) ) r/s =  Lr/s
X —>C

provided that Lr/s is a real number.

The limit of a rational power of a function is that power of the limit of the func­
tion, provided the latter is a real number.

Here are some examples of how Theorem 1 can be used to find limits o f polynomial 
and rational functions.

EXAMPLE 3 Using Properties of Lim its
Use the observations lim *.^ k = k  and lim Mt. x = c, and the properties of limits to 
find the following limits.

x 4 + x 2 -  1
(a) lim (x3 +  Ax2 -  3) (b) lim

x-^c x 2 + 5

SOLUTION

(a) lim (x3 + 4x2 — 3) =  lim x 3 +  lim 4x2 — lim 3
x—>c x—>c x—>c x—>c

= c 3 +  4 c 2 — 3

(b) limx-^c
+ x 2 -  1 lim (x4 + x 2 — 1)

J t - > C ____________________________

lim (x2+  5)
x—>c

lim x4
X— >C

lim x 2 — lim 1
x—>c_______ x—>c

lim x 2 +  lim 5
X — X— >C

' +  c2 -  1 
c2 +  5

Sum and D ifference Rules

Product and Constant 
Multip le Rules

Q uotient Rule

Sum and D ifference Rules

Product Rule 

Now try Exercises 5  and 6 .

Example 3 shows the remarkable strength of Theorem 1. From the two simple observa­
tions that l im ^ c. k = k and limx̂ cx =  c, we can immediately work our way to limits of 
polynomial functions and most rational functions using substitution.

THEOREM 2 Polynom ial and Rational Functions

1. I f / ( x )  =  anx"  +  a n- \ X n~ l +  ••• +  a 0 is any polynomial function and c is any 
real number, then

lim /(x )  = / ( c )  =  a nc n +  a „ - , c n~ l +  +  a 0.
X —>C

2. If f ( x )  and g(x) are polynomials and c is any real number, then

lim —̂7—- =  ^ ,C. , provided that g(c) + 0. 
g W  g(c)
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[-7T, 77-] by [-3, 3]

Figure 2.3 The graph of

f ix )  = (tan x)/x 

suggests that/(x)—>1 as x—>0. (Example 5)

[-10, 10] by [-100, 100]

Figure 2.4 The graph of

fix) = (x3 -  \)/{x -  2)
obtained using parametric graphing to pro­
duce a more accurate graph. (Example 6)

EXAMPLE 4  Using Theorem  2

(a) lim [x 2(2 -  x)] =  (3)2(2 -  3) =  - 9
x->3

( b ) =  r a i + ^ i + i _  1 2  _ 3

x->2 x +  2 2 +  2 4

Now try Exercises 9 and 11.

As with polynomials, limits of many familiar functions can be found by substitution at 
points where they are defined. This includes trigonometric functions, exponential and log­
arithmic functions, and composites of these functions. Feel free to use these properties.

EXAMPLE 5  Using the  Product Rule
. .. tanx

Determine l im  .
.*->0 x

SOLUTION

Solve G raphically  The graph o f /(x )  =  (tan x)/x  in Figure 2.3 suggests that the limit 
exists and is about 1.

C onfirm  A n aly tica lly  Using the analytic result of Exercise 75, we have

sin xtanx  / sinx  1 ,
l im  =  lim --------- • -------------] tan x =
x-^0  X x—>0 \  X COS X

sinx  1
=  l i m  • l i m   Product Rule

*->o x x—>o cos x

=  1  ± - =  1 - y  =  1.
cos 0 1

Now try Exercise 27.

Sometimes we can use a graph to discover that limits do not exist, as illustrated by 
Example 6.

EXAMPLE 6  Exploring a N onexistent L im it
Use a graph to show that

r 3 _  |
lim
x—>2 X  2

does not exist.

SOLUTION

Notice that the denominator is 0 when x is replaced by 2, so we cannot use substitution 
to determine the limit. The graph in Figure 2.4 o f/(x )  = (x3 -  l) /(x  -  2) strongly sug­
gests that as x—>2 from either side, the absolute values of the function values get very 
large. This, in turn, suggests that the limit does not exist.

Now try Exercise 29.

One-sided and Two-sided Limits
Sometimes the values of a function /  tend to different limits as x approaches a number c 
from opposite sides. When this happens, we call the limit o f / a s  x approaches c from the
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Figure 2.5 At each integer, the greatest 
integer function y =  int x has different 
right-hand and left-hand limits.
(Example 7)

right the right-hand lim it of / a t  c and the limit as x approaches c from the left the left- 
hand  lim it o f /a t  c. Here is the notation we use:

right-hand: lim f i x )  The limit o f f  as x  approaches c from the right.

left-hand: lim f i x )  The limit o f f  as x  approaches c from the left.
x—>c~

EXAMPLE 7 Function Values Approach Two Num bers
The greatest integer function/(x) = int x  has different right-hand and left-hand limits at 
each integer, as we can see in Figure 2.5. For example,

lim int x =  3
x-»3+

and lim int x  =  2.
.r—>3"

The limit of int x  as x  approaches an integer n from the right is n, while the limit as x ap­
proaches n from the left is n -  1.

Now try Exercises 31 and 32.

We sometimes call limÂ c /(x )  the two-sided limit of /  at c to distinguish it from the 
one-sided right-hand and left-hand limits of /  at c. Theorem 3 shows how these limits are 
related.

On the Far Side

If f  is not defined to the left of x =  c, 
then fdoes not have a left-hand limit at 
c. Similarly, if f is not defined to the 
right of x =  c, then f  does not have a 
right-hand limit at c.

THEOREM 3 One-sided and Two-sided Limits
A function /(x ) has a limit as x  approaches c if and only if the right-hand and left- 
hand limits at c exist and are equal. In symbols,

lim /(x )  =  [ «  lim /(x )  -  L  and lim f i x )  =  L.
x—>c x—»c+ x—>c

y

—x  + 1, 0 < x <  1
1, 1 < * <  2
2, x = 2
x  1, 2 < x <  3

x  + 5, 3 <  x <  4.

(Example 8)

Thus, the greatest integer function/(x) = int x of Example 7 does not have a limit as 
x—>3 even though each one-sided limit exists.

EXAMPLE 8  Exploring R ight- and Left-Hand Lim its
All the following statements about the function y  = /(x )  graphed in Figure 2.6 are true. 

At x = 0: lim /(x )  =  1.
x—>0+

A tx  = 1: lim /(x )  =  0 even though / ( l )  =  1,
*->1“

lim /(x )  =  1,
X—>1
/ has no limit as x—>1. (The right- and left-hand limits at 1 are not equal, so 
linv^i f{x )  does not exist.)

A tx  = 2: lim f ( x )  =  1,
x—>2~

lim f i x )  = 1,
*—>2+
lim /(x )  =  1 even though/(2) =  2.
x—>2

A tx  = 3: lim f i x )  = lim f i x )  =  2 = / ( 3 )  =  lim /(x ).
x—>3~ x—>3+ x—>3

A tx  = 4: lim f i x )  = 1.
x—>4

At noninteger values of c between 0 and 4 ,/h a s  a limit as x—¥c.
Now try  Exercise 37.
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y

L<.y

Figure 2.7 Sandwiching/between g 
and h forces the limiting value o f /to  be 
between the limiting values of g and h.

If we cannot find a limit directly, we may be able to find it indirectly with the Sandwich 
Theorem. The theorem refers to a function /  whose values are sandwiched between the 
values of two other functions, g and h. If g and h have the same limit as x—>c, th en /h as  
that limit too, as suggested by Figure 2.7.

THEOREM 4 The Sandwich Theorem
If g(x) ^  f i x )  <  h(x) for all x #  c in some interval about c, and

lim g(x) =  lim h(x) =  L,
x—>c x—>c

then

lim f ( x )  = L.

Figure 2.8 The graphs of vi = x 2, 
y2 = x 2 sin (1/jc), and y3 =  — x 2. Notice 
that }»3 <  y2 — Ji • (Example 9)

EXAMPLE 9  Using the  Sandwich Theorem

Show that lim [x2 sin (1/x)] =  0.
jc->0

SOLUTION

We know that the values of the sine function lie between -1 and 1. So, it follows that
1

sin ■ ^  \x2\ • 1 =  x 2

and

x z <  x 2 sin — <  x2._ v2

Because lim (~ x 2) =  lim x 2 =  0, the Sandwich Theorem gives
x^O  x->0

lim (x2 sin — | =  0
x—>0

The graphs in Figure 2.8 support this result.

Quick R eview  2.1 (For help, go  to Section 1.2.)

In Exercises 1-4, find/(2).
1. f i x )  = 2x3 — 5x2 + 4

. . 4x2 — 5
2. f i x )  =  - 3 -------

x + 4

3. f i x )  =  sin | t t  —

[ 3x ■

4. f i x )  =

x < 2  

x > 2

In Exercises 5-8, write the inequality in the form a < x < i
5. \x\ < 4

6. |jc| <  c2
7. \x -  2| <  3

8. \x — c| <  d 2
In Exercises 9 and 10, write the fraction in reduced form. 

x2 -  3 x -  18
9.

10.

x + 3 

2x2 — x 
2x2 +  x — 1

Sandwich Theorem
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Section 2.1 Exercises

In Exercises 1-4, an object dropped from rest from the top of a tall 
building falls y =  1 6 12 feet in the first t seconds.

1. Find the average speed during the first 3 seconds of fall.

2. Find the average speed during the first 4 seconds of fall.

3. Find the speed of the object at t =  3 seconds and confirm your 
answer algebraically.

4. Find the speed of the object at t =  4 seconds and confirm your 
answer algebraically.

In Exercises 5 and 6 , use limMC k =  k, limM(; x =  c, and the proper­
ties of limits to find the limit.

5. lim (2x3 — 3x2 + x — 1)

6 . limx4 - x 3 +  1
x-x xl  +  9

In Exercises 7-14, determine the limit by substitution. Support graph­
ically.

7. lim 3x2(2x -  1)*-»-1/2

9. lim (x3 +  3x2 — 2x — 17)X—>1

y1 + 4y +  3
1 1 . lim 2

y-» -3  yL -  3

13. lim (x -  6 ) 2 /3x->-2

8 . lim (x +  3) 1 998
x->-4

10 . i i m y 2  +  5 y , +  6y—*2 y +  2

1 2 . lim int jc
jc—>1/2

14. lim Vx + 3
m 2

In Exercises 15-18, explain why you cannot use substitution to deter­
mine the limit. Find the limit if it exists.

In Exercises 29 and 30, use a graph to show that the limit does not 
exist.

29. lim-
v2

30. lim x +  1

x-*i X — 1 x—>2 X2 — 4
In Exercises 31-36, determine the limit.

lim intx 32. lim intx
h O* h O-

lim int x 34. lim int x
*->0 .0 1 x->2~

lim 7 —7 36. lim 7 —7
Jr-»0+ x x—>0 |jc|

In Exercises 37 and 38, which of the statements are true about the 
function y =  f i x )  graphed there, and which are false?

37.
y=f(x)

(a) lim f ( x )  =  1X—> 1
(b) lim f i x )  =  0

(c) lim f i x )  =  1 (d) lim f i x )  =  lim f i x )
x -> 0 -  x -> 0+

(e) lim f ( x )  exists
x—>0

(f) lim f i x )  =  0
x->0

(g) lim /(x )  =  1
x->0

(h) lim f { x )  =  1
x->\

(i) lim f i x )  = 0
X—>1

( j )  lim f i x )  = 2
x->2~

15. lim V x  — 2*->-2

17. lim —
* -> 0  JC

16. lim —rjc—>0 X

18. lim
x—>0

(4 +  x)2 16

In Exercises 19-28, determine the limit graphically. Confirm alge­
braically.

19. lim —yx—>1 X l
2 0 . lim

3t + 2
/ —>2 t2 -  4

38.

2 1 . lim
5x3 +  8 .v2

x—>o 3x4 — \6x2

a . Iim 0  + «>3 - a

c m  v

25. limT—>o 2x2 — x

27. lim

2 2 . limx—>0
2 +  x

24. lim
sin 2x

x->0 x

26. lim
x—>0

28. lim

jr- > 0  x

x + sin x
x

3 sin 4x
x->o sin 3x

(a) lim /(x )  =  1 

(c) lim /U ) =  2
x—>2

(e) lim f ( x )  =  1X—>1
(g) lim f ( x )  =  lim f i x )x-̂>0+ x^0~
(h) lim f ( x )  exists at every c in (— 1 , 1 ).

x—>c

( i)  lim f ( x )  exists at every c in (1, 3).

(b) \ im f(x )  does not exist.*->2
(d) lim f i x )  =  2X~̂ l~
( f )  Yimf(x) does not exist.x—>1
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In Exercises 3^M4, use the graph to estimate the limits and value of 
the function, or explain why the limits do not exist.

In Exercises 45-48, match the function with the table.

39. y 1

v --f X)
—

X

(a) lim f i x )
jc—>3_

(b) lim f i x )
x—>3+

(c) lim /(x)
jc—>3

(d )/(3 )

45. *  =
x 2 + x — 2

x — 1
46. y, =

■ x — 2

47. y, =  -
v -2  _ 2x + 1

x — 1 48. y.

x -  1

x 1 + x — 2 
x  +  1

X Yi
F2HH8 -.M765
.8 -.3111
.9 -.1526
1 □
1.1 .14762
1.2 .29091
1.3 .M30M3

X= .7

( a )

X Yi
wmam 2.7
.8 2.8
.9 2.9
1 ERROR
1.1 3.1
1.2 3.2
1.3 3.3

X II

X Yi
i mmm 7.3667
.8 10.8
.9 20 .9
1 ERROR
1.1 -18.9
1.2 -8 .8
1.3 -5 .3 6 7rvIIX

(b)

X Yi
- .3

.8 - .2

.9 -.1
1 ERROR

1.2 .2
1.3 .3

X II

(c) (d)

In Exercises 49 and 50, determine the limit.

49. Assume that lim f ( x )  = 0 and lim g(x) =  3.
x->4 ;t—>4

(a) lim (g(x) +  3)X->4

(c) lim g2(x)
x—>4

(b) lim x f (x )
x—>4

(d) lim gix)
*->4 f i x )  ~  1

50. Assume that lim f i x )  = 7 and lim gix) = - 3 .
x—>b x—>b

(a) lim ( f ix )  +  g(x)) (b) lim (f(x) • gix))x-̂ b x—>/?

(c) lim 4 g{x)
x—>b

(d) lim
x-* gix)

In Exercises 51-54, complete parts (a), (b), and (c) for the piecewise- 
defined function.

(a) Draw the graph off.
(b) Determine limx_>c+ f i x )  and lim ^,,- f ix) .

(c) W riting  to  L earn  Does f i x )  exist? If so, what is it? 
If not, explain.

51. c =  2, f i x )  =
3 — X , x < 2
x
2 +  1’

x > 2

3 — x, x  < 2
2, x = 2
x/2, x  > 2

1
53. c =  1, f i x )

54. c =  -  I , f i x )  =

x — 1
v -3

* <  1 

2x + 5, x  >  1

1 - x 2, x  + -  1 
2, x  =  — 1
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In Exercises 55-58, complete parts (a)-(d) for the piecewise-defined 
function.

(a) Draw the graph off.
(b) At what points c in the domain o f/does limx->cfix)  exist?

(c) At what points c does only the left-hand limit exist?

(d) At what points c does only the right-hand limit exist?

sinx, — 2tt £  x < 0 
COS X, 0 <  X <  27755. f ( x )  =

56. f i x )  =
COSX, ~ 7 T < X < 0
secx, 0 77

68. Multiple Choice What is the value of limt_>i+/(x)?

(A) 5/2 (B) 3/2 (C) 1 (D) 0 (E) does not exist

69. Multiple Choice What is the value of lim;t_>1/(x)?

(A) 5/2 (B) 3/2 (C) 1 (D) 0 (E) does not exist

70. Multiple Choice What is the value o f /( l)?

(A) 5/2 (B) 3/2 (C) 1 (D) 0 (E) does not exist

Explorations
In Exercises 71-74, complete the following tables and state what you 
believe l im ^ o /M  to be.

r V i - x 2, 0 < x < l (a)
1, 1 < x < 2 X -0.1 -0.01 -0.001 -0.0001 ...

,2, x = 2 f ix ) ? ? ? 7

x, — 1 < x < 0 ,  o r 0 < x S  1 (b)
1, x = 0 0.1 0.01 0.001 0.0001
0, x < — 1, or x >  1 f ix ) ? ? ? ?

58. f ( x)  =

In Exercises 59-62, find the limit graphically. Use the Sandwich 
Theorem to confirm your answer. 71. f ( x )  = x  sin —

59. lim x  sin x
*->o

61. lim x 2 sin —=■

60. lim x 2 sin x
x—*0

62. lim x 2 cosr->0 X

73. f ( x )  =
1 0 '

72. f i x )  = sin - j

74. f ( x)  = x  sin (In |x |)

63. Free Fall A water balloon dropped from a window high above 
the ground falls y =  4.912 m in t sec. Find the balloon’s

(a) average speed during the first 3 sec of fall.

(b) speed at the instant t = 3.

64. Free Fall on a Small Airless Planet A rock released from 
rest to fall on a small airless planet falls y = gt2 m in t sec, g a 
constant. Suppose that the rock falls to the bottom of a crevasse 
20 m below and reaches the bottom in 4 sec.

(a) Find the value of g.
(b) Find the average speed for the fall.

(c) With what speed did the rock hit the bottom?

Standardized Test Questions
You should solve the following problems without using a 
graphing calculator.

65. True or False If lim fix)  =  2 and lim f ( x)  = 2, then
x—>c~ x—>c+

lim /(x) = 2. Justify your answer.
x—>c

x  +  sin x66. True or False lim    — — = 2. Justify your answer.
H« X

In Exercises 67-70, use the following function.
2 — x, x £

/ W  =  ^ - + 1 ,  x >
2

67. Multiple Choice What is the value of lim /(x)?
X—> 1 —

(A) 5/2 (B) 3/2 (C) 1 (D) 0 (E) does not exist

75. Group Activity To prove that lim ^o  (sin 9)19 =  1 when 9 is 
measured in radians, the plan is to show that the right- and left- 
hand limits are both 1.

(a) To show that the right-hand limit is 1, explain why we can 
restrict our attention to 0 <  9 <  77/ 2.

(b) Use the figure to show that

area of A OAP = y  sin 9,
Q

area of sector OAP = 

area of A OAT = y  tan 9.

(c) Use part (b) and the figure to show that for 0 <  9 < 77/ 2,

X sin 9 < -~9 <  7- tan 9.
2 2 2
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(d) Show that for 0 < 0 < tt/2  the inequality of part (c) can be 
written in the form

0 '1 <  ——-  <sin V cos 0
(e) Show that for 0 <  8 <  ir/2 the inequality of part (d) can be 
written in the form

sin 8cos 8 < —-— <  1.U
(f) Use the Sandwich Theorem to show that

sin 8 lim —-— = 1.e->o+ 8
(g) Show that (sin 8)/6 is an even function.

(h) Use part (g) to show that
sin 8 

lim —-— = 1.e->o- 8
(i) Finally, show that

.. sin 8 lim— — = 1.e->o 8

Extending the Ideas
76. Controlling Outputs L et/(x ) = V 3 x  -  2.

(a) Show that l i r n ^ / M  = 2 = /(2 ) .

(b) Use a graph to estimate values for a and b so that 
1.8 <f( x )  < 2.2 provided a < x  < b.

(c) Use a graph to estimate values for a and b so that 
1.99 <f( x )  <  2.01 provided a < x  < b.

77. Controlling Outputs Letf ( x)  = sin x.
(a) Find/(Tr/6).

(b) Use a graph to estimate an interval (a, b) about x  =  17/6 so 
that 0.3 < f( x )  <  0.7 provided a < x  < b.

(c) Use a graph to estimate an interval (a, b) about x  — tt/6 so 
that 0.49 <  f ( x)  < 0.51 provided a < x  < b.

78. Limits and Geometry Let P{a, a2) be a point on the parabola
y = x2, a > 0. Let O be the origin and (0, b) the y-intercept of the 
perpendicular bisector of line segment OP. Find l im ^ o  b.
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Limits Involving Infinity 2.2
What you'll learn about

• Finite Limits as x->±°°

• Sandwich Theorem Revisited

• Infinite Limits as x -^ a

• End Behavior Models

• "Seeing" Limits as x->±°°

. . . and why

Limits can be used to describe 
the behavior of functions for 
numbers large in absolute value.

i i i i i i i i i i i i i i i i i i

[-10, 10] by [-1.5, 1.5] 

(a)

f t
_

X
□ 01 .70712 .8944
3 .9M87
4 .9701
5 .9 8 0 6
6 .98BM

YiH X/-\T (X2 + 1)

Finite Limits as x —>±oc

The symbol for infinity (oo) does not represent a real number. We use oo to describe the be­
havior of a function when the values in its domain or range outgrow all finite bounds. For 
example, when we say “the limit o f /a s  x approaches infinity” we mean the limit o f /a s  x 
moves increasingly far to the right on the number line. When we say “the limit o f /a s  x ap­
proaches negative infinity (—°°)” we mean the limit o f /a s  x moves increasingly far to the 
left. (The limit in each case may or may not exist.)

Looking at / ( x )  =  1/x (Figure 2.9), we observe

(a)asx->°°, (1 /x )—>0 and we write

lim (1/x) =  0,X—>co

(b )asx —>— (1/x)—>0 and we write 

lim (1/x) =  0.

J  I I L J  U

[-6, 6] by [-4, 4]

Figure 2.9 The graph of/(X) = \/x  

We say that the line y  =  0 is a horizontal asymptote of the graph off.

DEFINITION Horizontal Asymptote
The line y = b is a horizontal asym ptote of the graph of a function y  = /(x ) if either 

lim /(x ) =  b or lim /(x )  =  b.
X—>oo X—> — oo

The graph of /(x )  =  2 +  (1/x) has the single horizontal asymptote y = 2 because 

lim 2 +  —1 =  2 and lim |2  +  — = 2 .
X—>co y X j  X—>—oo y X j

A function can have more than one horizontal asymptote, as Example 1 demonstrates.

X ea
-6 -.9 8 6 4
-5 -.9 8 0 6
-M -.9701
-3 -.9487
-2 -.8944
-1 -.7071
0 0

Yi 5 X/V~ (X2 + 1)
(b)

Figure 2.10 (a) The graph of/(x) = 
x / w x 2 + 1 has two horizontal asymp­
totes, y = — 1 and y = 1. (b) Selected 
values off. (Example 1)

EXAMPLE 1 Looking for H orizonta l Asym ptotes
Use graphs and tables to find \\mx^ .  f(x), lim;c_>_00/(x ) , and identify all horizontal 

asymptotes o f /(x )  =  x / V r  +  I .

SOLUTION

Solve G raphically  Figure 2.10a shows the graph for —10 ^  x £  10. The graph 
climbs rapidly toward the line y = 1 as x moves away from the origin to the right.
On our calculator screen, the graph soon becomes indistinguishable from the line.
Thus limv̂  /'(x) =  1. Similarly, as x moves away from the origin to the left, the

graph drops rapidly toward the line y  =  — 1 and soon appears to overlap the line. Thus 
lim, f ix )  =  — 1. The horizontal asymptotes are y =  1 and y =  — 1.

continued
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Confirm  N um erica lly  The table in Figure 2.10b confirms the rapid approach o f/(x ) 
toward 1 as x— S in ce /is  an odd function of x, we can expect its values to approach 
— 1 in a similar way as x—>— No w try Exercise 5.

Sandwich Theorem Revisited
The Sandwich Theorem also holds for limits as x—»±°°.

[-4tt, 4tt] by [-0.5, 1.5] 

(a)

X m
100 -.0051
200 -.00MM
300 -.0 0 3 3
MOO -.0021
500 -9E-M
600 7.ME-5
700 7.8E-M

Y i B  s i n ( X ) / X

EXAMPLE 2  Finding a L im it as x  Approaches oo

Find lim /(x ) for f ( x )  = X .X->CO x
SOLUTION

Solve G raphically  and N um erica lly  The graph and table of values in Figure 2.11 
suggest that y =  0 is the horizontal asymptote o f /

C onfirm  A n aly tica lly  We know that - 1  <  sin x <  I . So, fo rx  >  0 we have

1 sin x 1 <  <  —
X X X ’

Therefore, by the Sandwich Theorem,

0 =  lim ( - - )  =  lim =  lim -  =  0.
>°o \  X  I  x —>co X  X—>oo X

Since (sin x )/x  is an even function of x, we can also conclude that

sinx
lim  =  0. Now try Exercise 9.

JC-MO X

(b) Limits at infinity have properties similar to those of finite limits.

Figure 2.11 (a) The graph of/(x) =
(sin x)/x oscillates about the x-axis. The 
amplitude of the oscillations decreases 
toward zero as x—>±o°. (b) A table of val­
ues for/that suggests/(x)—>0 as x—>=°. 
(Example 2)

THEOREM 5 Properties of Lim its as x -h>±oo

If L, M, and k are real numbers and

lim f ( x )  = L  and lim g(x) =  M, then
X —> ± o o  X —> ± o o

Sum Rule: lim ( f{ x )  +  g(x)) =  L  +  M
X—>±00

Difference Rule: lim ( f ( x )  -  g(x)) =  L -  M
x —>±oo

Product Rule: lim ( f ( x ) - g ( x ) )  =  L - M
x —>±oo

Constant Multiple Rule: lim (k ' f ( x ) )  =  k ' L
X—>±00

Quotient Rule: lim =  M  #  0
j :—> ± oo g { X )  M

Power Rule: If r and 5 are integers, ,v i=- 0, then

lim {f{x ))r/s = Lr/sX—>±00

provided that Lrls is a real number.
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We can use Theorem 5 to find limits at infinity of functions with complicated expres­
sions, as illustrated in Example 3.

EXAMPLE 3  Using Theorem  5
. , 5x +  sin x 

Find l im --------------- .
x —>co X

SOLUTION

Notice that

So,

5x +  sin x  _  5x sin x  _  +  sin x
x x x  x

5 x + s in x  sinx
l im ----------------=  lim 5  +  l im --------  Sum Rule

X—>00 X—>00 X

=  5 +  0 =  5. Known Values

Now try Exercise 25.

Exploring Theorem  5

We must be careful how we apply Theorem 5.

1. (Example 3 again) L et/(x ) =  5x +  sin x  and g(x) = x. Do the limits as x—>oo 
o f /a n d  g exist? Can we apply the Quotient Rule to lim.x_*oo/(x)/g(x)? Explain. 
Does the limit of the quotient exist?

2. L et/(x ) =  sin2 x and g(x) = cos2 x. Describe the behavior o f /a n d  g as x—>co. 
Can we apply the Sum Rule to lim ^o , ( f ( x )  +  g(x))? Explain. Does the limit of 
the sum exist?

3. L e t/(x ) =  In (2x) and g(x) = In (x +  1). Find the limits as x—>co o f /a n d  g. Can 
we apply the Difference Rule to lim MOO ( /(x )  — g(x))? Explain. Does the limit 
of the difference exist?

4. Based on parts 1- 3 , what advice might you give about applying Theorem 5?

EXPLORATION 1

Infinite Limits as x-^a
If the values of a function/(x) outgrow all positive bounds as x approaches a finite number 
a, we say that limv_̂ a /(x )  = If the values o f/becom e large and negative, exceeding all 
negative bounds as x— we say that lim X̂ af (x )  = —oo.

Looking a t/(x ) =  1 /x  (Figure 2.9, page 70), we observe that

lim 1/x =  oo and lim l / x = — °°.
j t —> 0 +  a :—> 0

We say that the line x =  0 is a vertical asymptote of the graph off.

DEFINITION V ertica l Asym ptote

The line x =  a is a vertical asym ptote of the graph of a function y = /(x )  if either 

lim /(x )  =  ± o o  or lim f { x )  = ± ° °
x—>a+ x—>a
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[-217, 2t t ] by [-5, 5]

Figure 2.12 The graph off i x )  = tan x 
has a vertical asymptote at

377 77 77 377

••• I " * - - " (Example5)

y = 3x4 -  2x3 + 3x2 -  5x + 6

[-2, 2] by [-5, 20] 

(a)

[-20, 20] by [-100000, 500000] 

(b)

Figure 2.13 The graphs o f/and  g, 
(a) distinct for |x| small, are (b) nearly 
identical for |x| large. (Example 6)

EXAMPLE 4  Finding V ertica l Asym ptotes

Find the vertical asymptotes off ( x )  = Describe the behavior to the left and right of 
each vertical asymptote. X

SOLUTION

The values of the function approach °o on either side of x  =  0.

lim -L- =  oo and lim —r  =  °°-
x->0+ X jc— X

The line x  =  0 is the only vertical asymptote. Now try Exercise 27.

We can also say that limx̂ 0 ( 1/x2) =  oo. We can make no such statement about 1 Ix.

EXAMPLE 5  Finding Vertical Asym ptotes
The graph of f ( x )  =  tan x =  (sin x)/(cos x) has infinitely many vertical asymptotes, 
one at each point where the cosine is zero. If a is an odd multiple of 77/ 2 , then

lim t a n x = —00 and lim tanx  =  co;
x—»a+ x-^a

as suggested by Figure 2.12. Now try Exercise 31.

You might think that the graph of a quotient always has a vertical asymptote where the 
denominator is zero, but that need not be the case. For example, we observed in Section 
2.1 that lirn ^ o  (sinx)/x  =  1.

End Behavior Models
For numerically large values of x, we can sometimes model the behavior of a complicated 
function by a simpler one that acts virtually in the same way.

EXAMPLE 6  M odeling Functions For |x | Large

L et/(x ) =  3x4 — 2x3 +  3x2 — 5x +  6 and g(x) =  3x4. Show that w hile /and  g are quite 
different for numerically small values of x, they are virtually identical for |x| large.

SOLUTION

Solve G raphically  The graphs of/ and g  (Figure 2.13a), quite different near the ori­
gin, are virtually identical on a larger scale (Figure 2.13b).

C onfirm  A n aly tica lly  We can test the claim that g m odels/fo r numerically large 
values of x by examining the ratio of the two functions as x—»±oo. We find that

.. f { x )  3x4 — 2x3 +  3x2 — 5x +  6
lim =  lim

±“ g(x)  X - > ± 0 0  3x4

2 1 5 2
=  lim  1 -  —  +  - r  -  — r +  ~a

*->±co \ 3x x 2 3x3 x4 

=  1,

convincing evidence that/ and g  behave alike fo r |x| large. Now try  Exercise 39.
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DEFINITION End B ehavior Model

The function g is
f ( x )

(a) a right end behavior model for f  if and only if lim ■ ■ >’ , =  1.
*->00 g(x)

If one function provides both a left and right end behavior model, it is simply called an 
end behavior model. Thus, g(x) =  3x4 is an end behavior model fo r/(x ) =  3x4 — 2 x 3 + 
3x2 — 5x +  6 (Example 6).

In general, g(x) =  anx n is an end behavior model for the polynomial function f ( x )  = 
anx n + an- \X n ~ 1 +  ••• +  a0, an i= 0. Overall, the end behavior of all polynomials behave 
like the end behavior of monomials. This is the key to the end behavior of rational func­
tions, as illustrated in Example 7.

EXAMPLE 7 Finding End B ehavior Models
Find an end behavior model for

(a) Notice that 2x5 is an end behavior model for the numerator o f f ,  and 3x2 is one 
for the denominator. This makes

an end behavior model for /

(b) Similarly, 2x3 is an end behavior model for the numerator of g, and 5x3 is one for 
the denominator of g. This makes

Notice in Example 7b that the end behavior model for g, y = 2/5, is also a horizontal 
asymptote of the graph of g, while in 7a, the graph o f /d o e s  not have a horizontal asymp­
tote. We can use the end behavior model of a rational function to identify any horizontal 
asymptote.

We can see from Example 7 that a rational function always has a simple power function 
as an end behavior model.

A function’s right and left end behavior models need not be the same function.

EXAMPLE 8  Finding End B ehavior Models
Let f i x )  = x  + e ~x. Show that g(x) = x  is a right end behavior model for/w hile 
h(x) =  e x is a left end behavior model for/

SOLUTION

On the right.

SOLUTION

2x5 2 ,
TTT =  TT*3x2 3

2x 3 _  2 
5x3 5

an end behavior model for g. Now try Exercise 43.

=  lim 1 -\----------=  1 because l im ------ =  0.
X

continued
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[-9, 9] by [-2, 10]

Figure 2.14 The graph off{x) = x + e~x 
looks like the graph of g(x) =  x to the right 
of the j-axis, and like the graph of h(x) = 
e~x to the left of the j-axis. (Example 8)

On the left,

lim = lim * +_t—  =  lim | ~z~  +  11 =  1 because lim ——  =  0. 
h(x) x—>—oo e x—> co e

The graph o f / in  Figure 2.14 supports these end behavior conclusions.

Now try Exercise 45.

"Seeing" Limits as x->±oo
We can investigate the graph of y  =  / ( x) as x->±co by investigating the graph of 
y = f {  l /x )  asx—>0.

EXAMPLE 9  Using Substitution
Find lim sin (l/x ).

X —>CO

SOLUTION

Figure 2.15a suggests that the limit is 0. Indeed, replacing lim Ma, sin (l/x ) by the 
equivalent linrt._>0+ sin x =  0 (Figure 2.15b), we find

lim sin 1 /x  =  lim sin x =  0.
X—>cc x —> 0 +

Now try Exercise 49.

[-10, 10] by [-1, 1]

(a)
[—2-ir, 2tt] by [-2, 2] 

(b)

Figure 2.15 The graphs of (a) f(x)  = sin (l/x) and (b) g(x) = / (  l/x) = sinx. (Example 9)

Quick Review  2.2 (For help, go  to Section 1.2 and  1.5.)

In Exercises 1-4, find/-1 and graph f f ~ K  and y = x in the same 
square viewing window.

1. f(x) — 2x -  3 2. f(x)  = ex

3. f(x) =  tan” 1 x 4. f(x) = cot-1 x

In Exercises 5 and 6, find the quotient q(x) and remainder tix) when 
f{x) is divided by g(x).

5. f(x) =  2x3 — 3x2 + x — 1, g(x) = 3x3 +  4jc — 5
6. f(x) =  2x5 — x3 +  x — 1, g(x) = x3 — x2 +  1

In Exercises 7-10, write a formula for (a) / ( —x) and (b)/(l/x). Sim­
plify where possible.

7. fix )  = COS X

8. II e~x

9. f ix )  =
In x

X

10. f ix )  =
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Section 2.2 Exercises

In Exercises 1-8, use graphs and tables to find (a) limx̂ a,/(x) and 
(b) limx_>_00/(.\:) (c) Identify all horizontal asymptotes.

sin 2x
x

3x3 -  x + 1

1. f i x )  =  cos j 2. f i x )  =

e~x
3. f ( x )  =  — 4. f i x )  =

 ̂ r( , 3x + 1 
5’ _  |x| + 2 6. f i x )  =

7- / W  =  ~T7 8. f i x )  =

x  + 3 
2x — 1
Ul -  3 

1*1 
Ul + 1

In Exercises 9-12, find the limit and confirm your answer using the 
Sandwich Theorem.

9. lim
1 — cos x

X->00 X

sin x11. lim
x—> 00 X

10. lim 

12. lim

1 — cos x

sin (x2)

In Exercises 13-20, use graphs and tables to find the limits.
1

;r->2+ X ~  2 
1

13. limj->24

15. lim*—>—3 X “I" 3
1- mtx  17. lim ------
*—>0+ X

19. lim CSC*j-iO*

14. lim
x—>2 X 2

X
16. lim ———

jt->-3+ X +  3

1C r in t*18. lim ------*->o- x

20. lim sec x
x—>{tt/2 )+

In Exercises 21-26, find l i m ^  y and l im ^ - ^  y.

21. y = \2 —

23. y =

25. y =

x + 1 / \5  + x 2 

c o s(l / x )

22. y = - + 1
5x2 -  1

1 + (1/x) 
sinx

24. v =
2x +  sin x

2x2 + .
26. y

x  sin x + 2 sin x 
2x2

In Exercises 27-34, (a) find the vertical asymptotes of the graph of 
f ix).  (b) Describe the behavior of f ix )  to the left and right of each 
vertical asymptote.

27. f ( x)  =

29. f i x )  = 

31. f i x )  = 

33. f i x)  =

1
x2 -
X2 —

4
2x

X +  1

cot X
tan x

28. f i x )
x 2 -  1 
2x +  4

1 — x
30- / ( * ) =  2*2- 5 x - 3-
32. f i x )  = secx

,, , cotx 
34. f i x )  = -------

In Exercises 35-38, match the function with the graph of its end be­
havior model.

2x3 — 3x2 + 1 _  x5 - x 4 +  x + l
35. y = 

37. y

x + 3

2x4 -  x3 +  x2 -  1 
2 -  x

36. y =

38. y =

2x2 +  x — 3

x4 — 3x3 + x2 -  1 
1 -  x2

(b)

h xj -i i l i ......

(C) (d)

In Exercises 39^-4, (a) find a power function end behavior model for 
f. (b) Identify any horizontal asymptotes.

39. f i x )  = 3x2 -  2x + 1

4i- /<*) = 2^ - ; -  5

43. f i x )  =
4x3 — 2x + 1 

x — 2

40. f i x )  = —4x3 + x2 — 2x — 1 

42. /(* )= , 3x2- *  +  ;5

44. f i x )  =

x- -  4 

—x4 +  2x2 +  x — 3

In Exercises 45^-8, find (a) a simple basic function as a right end be­
havior model and (b) a simple basic function as a left end behavior 
model for the function.
45. y = ex — 2x 46. y = x2 + e~x

47. y  =  x +  In |x| 48. y = x2 + sinx

In Exercises 49-52, use the graph of y = / (  1/x) to find limMC0/(x )
and lim*_»-*/(■*)•
49. f i x )  = xex 50. f i x )  =  x 2e~x

51. f i x )
In |x|

52. f i x )
. 1

: x sin —
x

In Exercises 53 and 54, find the limit o f/(x ) as (a) x— oo, 
(b) x—>oo, (c) x—>0—, and (d) x—>0+.

1/x, x <  0 
- 1 ,  x > 0
x — 2

53. f i x )  =

54. f i x )  = x  — 1 
1/x2,

X <  0 

x >  0

Group Activity In Exercises 55 and 56, sketch a graph of a func­
tion y = f{x)  that satisfies the stated conditions. Include any asymp­
totes.
55. lim f i x )  =  2, lim f i x )  =  oo, lim f i x )  =  oo,

x—>1 x—>5~ x—»5+

lim /(x) =  — 1, lim f i x )  = —oo,
x—>co x—>—2+

lim f i x )  =  oo, lim f i x )  = 0
x—>—2 _ x—>—oo

56. lim /(x ) =  - 1 ,  lim f i x )  =  -oo, lim f i x )  = oo,
x—>2 x -» 4 + x -> 4 -

lim /(x ) =  oo, lim f i x )  = 2
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57. Group Activity End Behavior Models Suppose that gt(x) 
is a right end behavior model for f ( x )  and that g2(x) is a right 
end behavior model for/2(x). Explain why this makes gi(x)/g2(x) 
a right end behavior model forf1(x)/f2(x).

58. Writing to Learn Let L be a real number, limx_+cf(x)  = L, 
and lim_t_>c g{x) = oo or —oo. Can limJ._>c (/(x ) + g(x)) be 
determined? Explain.

Standardized Test Questions
P jlY o u  may use a graphing calculator to solve the following 

problems.
59. True or False It is possible for a function to have more than 

one horizontal asymptote. Justify your answer.
60. True or False If/(x) has a vertical asymptote at x = c, then either 

l in w - / ( x )  = lirrv_>c+/(x ) = °o o r l im ^ c- /(x )  =  

limr_H.+/(x) =  —oo. Justify your answer.

61. Multiple Choice lim —- —  =
x—>2 x — 2

(A)-oo (B)oo (C) 1 (D) —1/2 (E) — 1

62. Multiple Choice lim cos (2*} =
•t->0 X

(A) 1/2 (B) 1 (C) 2 (D) cos 2 (E) does not exist

63. Multiple Choice lim sin ^  =jr->0 x
(A) 1/3 (B) 1 (C) 3 (D) sin 3 (E) does not exist

64. Multiple Choice Which of the following is an end behavior for

m  -  2 j , - f Y + 1 ?XT — 1
(A)*3 (B)2x3 (C) 1/x3 (D) 2 (E) 1/2

Exploration
65. Exploring Properties of Limits Find the limits off, g, and/g 

as x—»c.

(a)/(x) = —, g(x)= x , c = 0

(c)/(x) = x  _ -2 , gM  = ( x -  2)3, c = 2

(d )/(x ) =
(3 -  x)4

g(x) = ( x -  3)2, c = 3

(e) Writing to Learn Suppose that lim^_>c/(x) = 0 and 
limMC g(x) = oo. Based on your observations in parts (a)-(d), 
what can you say about lim ^ c. (f(x)  • g(x))?

Extending the Ideas
66. The Greatest Integer Function

(a) Show that
x — 1 int x , , . , x — 1 int x , , .
 < ------ <  1 (x > 0) and --------> ------- >  1 (x <  0).

X X  X X

(b) Determine limint x
x

. . i—̂ intx
(c) Determine lim ---- .

x
67. Sandwich Theorem  Use the Sandwich Theorem to confirm 

the limit as x—>oo found in Exercise 3.
68. Writing to Learn Explain why there is no value L for which 

lim^oo sin x = L.

In Exercises 69-71, find the limit. Give a convincing argument that 
the value is correct.

69. l im 1̂*->co \nx

70. lim -IBjL
*->OC logx

71.
jc->co in x

(b)/(x) = ----3 , g(x) = 4x3, c = 0

Quick Quiz for AP* Preparation: Sections 2.1 and 2.2

You should solve the following problems without using 
a graphing calculator.

1. Multiple Choice Find lim x — x — 6 ....if it exists.
x->3 x — 3 

(A) -1  (B) 1 (C) 2 (D) 5 (E) does not exist

2. Multiple Choice Find lim /(x), if it exists, where
x—>2+

f ix )  =
3x + 1, x < 2 

5 x > 2
lx  + 1

(A) 5/3 (B) 13/3 (C) 7 (D) oo (E) does not exist

3. Multiple Choice Which of the following lines is a horizontal 
asymptote for

. 3x3 — x2 + x — 1 n
f(x )=  2x3 + 4x — 5 '

(A) y = —x  (B) y = 0 (C) y = 2/3 (D)y = 7/5 (E)>- = 3/2

4. Free Response Letf(x) = ----- .
x

(a) Find the domain and range o f f
(b) Is/even, odd, or neither? Justify your answer.
(c) Find limMG0/(x).
(d) Use the Sandwich Theorem to justify your answer to part (c).
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Continuity___________________ 2.3
W hat you'll learn  about

• Continuity at a Point

• Continuous Functions

• Algebraic Combinations

• Composites

• Intermediate Value Theorem 
for Continuous Functions

. . . and why

Continuous functions are used 
to describe how a body moves 
through space and how the speed 
of a chemical reaction changes 
with time.

Figure 2.16 How the heartbeat returns 
to a normal rate after running.

Continuity at a Point
When we plot function values generated in the laboratory or collected in the field, we 
often connect the plotted points with an unbroken curve to show what the function’s val­
ues are likely to have been at the times we did not measure (Figure 2.16). In doing so, we 
are assuming that we are working with a continuous function, a function whose outputs 
vary continuously with the inputs and do not jump from one value to another without tak­
ing on the values in between. Any function y  =  f i x )  whose graph can be sketched in one 
continuous motion without lifting the pencil is an example of a continuous function.

Continuous functions are the functions we use to find a planet’s closest point of ap­
proach to the sun or the peak concentration of antibodies in blood plasma. They are also the 
functions we use to describe how a body moves through space or how the speed of a chem­
ical reaction changes with time. In fact, so many physical processes proceed continuously 
that throughout the eighteenth and nineteenth centuries it rarely occurred to anyone to look 
for any other kind of behavior. It came as a surprise when the physicists of the 1920s dis­
covered that light comes in particles and that heated atoms emit light at discrete frequencies 
(Figure 2.17). As a result of these and other discoveries, and because of the heavy use of 
discontinuous functions in computer science, statistics, and mathematical modeling, the 
issue of continuity has become one of practical as well as theoretical importance.

To understand continuity, we need to consider a function like the one in Figure 2.18, 
whose limits we investigated in Example 8, Section 2.1.

Figure 2.17 The laser was developed as 
a result of an understanding of the nature 
of the atom.

Figure 2.18 The function is continu­
ous on [0, 4] except at x =  l and x  =  2. 
(Example 1)

EXAMPLE 1 Investigating C ontinu ity
Find the points at which the function /in  Figure 2.18 is continuous, and the points at 
w h ich /is  discontinuous.

SOLUTION

The function/is continuous at every point in its domain [0, 4] except a tx  =  1 and x  =  2. 
At these points there are breaks in the graph. Note the relationship between the limit o f /  
and the value o f /a t  each point of the function’s domain.

Points at which f  is continuous:
At x  =  0,

At x  = 4,

lim f { x )  = / (0 ) .
x-»0+

lim f i x )  = / (4 ) .
x—>4“

At 0 <  c <  4, c ¥= 1,2, lim /(x ) = / (c ) .
X —>C continued
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Continuity 
from the right

Two-sided
continuity Continuity 

from the left

y =/W

Points at which f  is discontinuous: 

At x  =  1,

At x  =  2,

At c <  0, c >  4,

lim /'(x) does not exist.
jt->i

lim f ( x )  =  1, but 1 =£/(2).x-̂ 2

these points are not in the domain o f/.

Now try Exercise 5.

a c b ~*x To define continuity at a point in a function’s domain, we need to define continuity at
an interior point (which involves a two-sided limit) and continuity at an endpoint (which 

Figure 2.19 Continuity at points a, b, involves a one-sided limit). (Figure 2.19)
and c for a function y = fix )  that is con­
tinuous on the interval [a, b\.

DEFINITION C ontinu ity  a t a Point

Interior Point: A function y =  f i x ) is continuous at an interior point c of its domain if

lim /(x )  = / (c ) .
X —>C

Endpoint: A function y = f ( x )  is continuous at a left endpoint a or is continuous 
at a right endpoint b of its domain if

lim f i x )  = f (a) or lim f i x )  = f i b ) ,  respectively.
x—>a+ x-)b~

If a function /is not continuous at a point c, we say th a t/ is  discontinuous at c and c is 
a point of discontinuity of/  Note that c need not be in the domain o f f

Figure 2.20 The function int x is 
continuous at every noninteger point. 
(Example 2)

EXAMPLE 2 Finding Points of C ontinu ity  and D iscontinuity
Find the points of continuity and the points of discontinuity of the greatest integer func­
tion (Figure 2.20).

SOLUTION

For the function to be continuous at x =  c, the limit as x—>c must exist and must equal 
the value of the function at x =  c. The greatest integer function is discontinuous at every 
integer. For example,

lim int x  =  2 and lim int x =  3
x—>3— x—>3+

so the limit as x—>3 does not exist. Notice that int 3 =  3. In general, if n is any integer,

lim int x  = n —
x—>n

and lim in tx  =  n,
X —> « +

so the limit as x— does not exist.

The greatest integer function is continuous at every other real number. For example,

lim in tx  =  1 =  int 1.5.
*—>1.5

In general, if n — 1 <  c < n, n an integer, then

lim int x — n — 1 =  int c.
X —>C

Now tr y  Exercise 7.
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S lu /d & tf, A * tft fjo c J z A jo ti
________ (1946-)

Distinguished scientist, 
Shirley Jackson credits 
her interest in science 
to her parents and ex­
cellent mathematics 
and science teachers in 
high school. She stud­
ied physics, and in 

1973, became the first African American 
woman to earn a Ph.D. at the Massachu­
setts Institute of Technology. Since then, 
Dr. Jackson has done research on topics 
relating to theoretical material sciences, 
has received numerous scholarships and 
honors, and has published more than 
one hundred scientific articles.

Figure 2.21 is a catalog of discontinuity types. The function in (a) is continuous a tx  =  0. 
The function in (b) would be continuous if it h a d /(0 )  =  1. The function in (c) would be 
continuous if / ( 0 )  were 1 instead of 2. The discontinuities in (b) and (c) are removable. 
Each function has a limit as x—>0, and we can remove the discontinuity by setting /(0 )  
equal to this limit.

The discontinuities in (d)-(f) of Figure 2.21 are more serious: lim^_>0/(x )  does not 
exist and there is no way to improve the situation by chang ing /a t 0. The step function in
(d) has a jump discontinuity: the one-sided limits exist but have different values. The 
func tion /(x ) =  l /x 2 in (e) has an infinite discontinuity. The function in ( f )  has an 
oscillating discontinuity: it oscillates and has no limit as x—>0.

Figure 2.21 The function in part (a) is continuous at x =  0. The functions in parts (b)-(f) are not.
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y

Figure 2.22 The function y  = 1/x is 
continuous at every value of x except 
x =  0. It has a point of discontinuity at 
x =  0. (Example 3)

Removing a D iscontinuity

t  rt \ x 3 -  7x -  6
L c t f ( x )  =  x 2 _  9 ■

1. Factor the denominator. What is the domain o f /?

2. Investigate the graph o f/a round  x  =  3 to see th a t/h a s  a removable discontinu­
ity at x  = 3.

3. How sh ou ld /be  defined at x = 3 to remove the discontinuity? Use zoom-in and 
tables as necessary.

4. Show that {x -  3) is a factor of the numerator o ff ,  and remove all common fac­
tors. Now compute the limit as x—>3 of the reduced form for/.

5. Show that the extended function

EXPLORATION 1

g(x)
x 3 — 7x — 6

x
10/3,

2 _ x  1= 3 

x  =  3

is continuous at x  = 3. The function g is the continuous extension of the original 
function /to  include x =  3.

Now try Exercise 25.

Continuous Functions
A function is continuous on an interval if and only if it is continuous at every point of the 
interval. A continuous function is one that is continuous at every point of its domain. A 
continuous function need not be continuous on every interval. For example, y = \ / x  is not 
continuous on [ — 1, 1 J.

EXAMPLE 3 Identify ing  Continuous Functions

The reciprocal function y  = 1/x (Figure 2.22) is a continuous function because it is 
continuous at every point of its domain. However, it has a point of discontinuity at 
x  =  0 because it is not defined there.

Now try Exercise 31.

Polynomial functions /  are continuous at every real number c because limr_̂ c f i x )  = 
f{c).  Rational functions are continuous at every point of their domains. They have points 
of discontinuity at the zeros of their denominators. The absolute value function y  =  |x | is 
continuous at every real number. The exponential functions, logarithmic functions, 
trigonometric functions, and radical functions like y  =  V x  in a positive integer greater 
than 1) are continuous at every point of their domains. All of these functions are continu­
ous functions.

Algebraic Combinations
As you may have guessed, algebraic combinations of continuous functions are continuous 
wherever they are defined.



82  Chapter 2 Lim its and Continuity

THEOREM 6 Properties of Continuous Functions

If the functions/and g are continuous a tx  =  c, then the following combinations are 
continuous at x  = c.

1. Sums: f +  8

2. Differences: f ~  8

3. Products: / •  8

4. Constant multiples: k • / ,  for any number k

5. Quotients: f/g, provided g(c) + 0

Composites
All composites of continuous functions are continuous. This means composites like

y = sin (x2) and y  =  |co sx |

are continuous at every point at which they are defined. The idea is that if / ( x )  is continu­
ous at x = c and g(x) is continuous at x =  /(c ) , then g o /  is continuous at x = c (Figure 
2.23). In this case, the limit as x—>c is g(f(c)).

g ° f

Figure 2.23 Composites of continuous functions are continuous.

THEOREM 7 Composite of Continuous Functions
I f / i s  continuous at c and g is continuous a t/(c ) , then the composite g o f  is contin­
uous at c.

[-377, 377] by [-0.1, 0.5]

Figure 2.24 The graph suggests that 
y = |(xsinx)/(x2 +  2)| is continuous. 
(Example 4)

EXAMPLE 4  Using Theorem  7
x sin x

Show that y  =
+  2

is continuous.

SOLUTION
The graph (Figure 2.24) of y = \ (x sin x )/(x 2 + 2)| suggests that the function is continu­
ous at every value of x. By letting

g(x) = |x | and /(x )  =  *2 ™ 2 ’

we see that y  is the composite g o f
We know that the absolute value function g is continuous. The function /is  continuous 
by Theorem 6. Their composite is continuous by Theorem 7. Now try Exercise 33.
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Intermediate Value Theorem for Continuous Functions
Functions that are continuous on intervals have properties that make them particularly use­
ful in mathematics and its applications. One of these is the intermediate value property. A  
function is said to have the intermediate value property if it never takes on two values 
without taking on all the values in between.

f(x)  =
2x — 2,
3,

1 < x < 2  
2 < x < 4

does not take on all values between 
/ ( l )  = 0 and/(4) =  3; it misses all the 
values between 2 and 3.

THEOREM 8 The Intermediate Value Theorem for Continuous
Functions

A function v =  /(x )  that is continuous on a closed interval [a, b\ takes on every
value between f (a)  and f ib) .  In other words, if Vo is betw een/(a) and f ib ) ,  then y0 =  

/ ( c )  for some c in [a, b].

y = m

fib)

y0

fid)
/  l 

/  1
r v __  y  i
1 — 1 
1 1 
1 1 
1 1

0 a c >X

Grapher Failure

In connected mode, a grapher may con­
ceal a function's discontinuities by por­
traying the graph as a connected curve 
when it is not. To see what we mean, 
graph y = int (x) in a [-10 ,10 ] by 
[-10 ,10 ] window in both connected and 
dot modes. A knowledge of where to 
expect discontinuities will help you rec­
ognize this form of grapher failure.

The continuity o f /o n  the interval is essential to Theorem 8. I f / i s  discontinuous at even 
one point of the interval, the theorem’s conclusion may fail, as it does for the function 
graphed in Figure 2.25.

A Consequence for Graphing: Connectivity Theorem 8 is the reason why the graph 
of a function continuous on an interval cannot have any breaks. The graph will be 
connected, a single, unbroken curve, like the graph of sin x. It will not have jumps like 
those in the graph of the greatest integer function int x, or separate branches like we see in 
the graph of 1/x.

Most graphers can plot points (dot mode). Some can turn on pixels between plotted 
points to suggest an unbroken curve (connected mode). For functions, the connected for­
mat basically assumes that outputs vary continuously with inputs and do not jump from 
one value to another without taking on all values in between.

[-3, 3] by [-2. 2]

Figure 2.26 The graph of 
/(x ) = x3 -  x — 1. (Example 5)

EXAMPLE 5  Using Theorem  8
Is any real number exactly 1 less than its cube?

SOLUTION

We answer this question by applying the Intermediate Value Theorem in the following 
way. Any such number must satisfy the equation x =  x 3 — 1 or, equivalently, 
x 3 — x — 1 = 0 .  Hence, we are looking for a zero value of the continuous function 
/(x )  =  x 3 — x — 1 (Figure 2.26). The function changes sign between 1 and 2, so there 
must be a point c between 1 and 2 w here/(c) =  0.

N ow try  Exercise 46.
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Quick R eview  2.3 (For help, go to Sections 1.2 and  2.1.)

1. Find lim
3x2 -  2x + 1 

x 3 +  4
2. Let f ( x)  = int x. Find each limit.

(a) lim f ( x)  (b)lim  f i x )  (c) lim f i x )  (d) / ( — 1)*->-1“ JC—>—1+ x->-l

3. Let f i x )  = x 1 -  4x +  5, x < 2  
x > 2 .4 — x ,

Find each limit.

(a) lim f i x )  (b) lim /(x) (c) lim /(x) (d )/(2 )
x->2~ x-*2+ x-^2

In Exercises 4-6, find the remaining functions in the list of functions:
f g j ° g , g ° f

2x -  1 1
4 ./(x )  = ^ — L, gix) =  -  +  1 

x + 5 x

5. f i x )  =  x2, ig o f) ix)  = sin x 2, domain of g = [0, oo)

6. g{x) = V x  — 1, (g o f ) (x)  = l /x,  x  >  0

7. Use factoring to solve 2x2 + 9x — 5 = 0.

8. Use graphing to solve x 3 + 2x — 1 = 0.

In Exercises 9 and 10, let

f i x )  =
5 -  x,  x  <  3
—x2 + 6x — 8, x > 3.

9. Solve the equation f i x )  =  4.

10. Find a value of c for which the equation f i x )  = c has no 
solution.

Section 2.3 Exercises

In Exercises 1-10, find the points of continuity and the points of dis­
continuity of the function. Identify each type of discontinuity.

,  1 •* + 1
!• y =  2. y = ■(x + 2)2 
,  1
3- y = 3 ? T T
5. y = V 2x  + 3 

7. y = \x\/x 

9. y = ex̂x

x 2 — 4x + 3

4. y = \ x ~  1|

6. y = V 2 x  — 1

8. y =  cot x 

10. y = In ix + 1)

In Exercises 11-18, use the function/ defined and graphed below to 
answer the questions.

f i x )  =

X2 — 1, 1 ■ x <  0
2x, 0 <  X <  1

1, X = 1
— 2x + 4, 1 <  X < 2
0, 2 <  X <  3

11. (a) D oes/(—1) exist?
(b) Does limj:_>_ 1+/(x) exist?

(c) Does lim*_»-!+/(*) = / ( —1)?
(d) Is/continuous a tx  =  —1?

12. (a) D oes/(l) exist?
(b) Does lim ̂  f i x )  exist?

(c) Does limX̂ f i x )  = / (  1)?

(d) Is/continuous a tx  = 1?

13. (a) Is/defined at x = 2? (Look at the definition of/ )

(b) Is/continuous atx  = 2?

14. At what values of x is/continuous?

15. What value should be assigned to /(2 ) to make the extended 
function continuous at x =  2?

16. What new value should be assigned to / ( l )  to make the new 
function continuous at x = 1 ?

17. Writing to Learn Is it possible to extend/to  be continuous 
at x =  0? If so, what value should the extended function have 
there? If not, why not?

18. Writing to Learn Is it possible to extend/to  be continuous 
at x =  3? If so, what value should the extended function have 
there? If not, why not?

In Exercises 19-24, (a) find each point of discontinuity, (b) Which of 
the discontinuities are removable? not removable? Give reasons for 
your answers.

3 — x, x <  2
19. f i x )  = x  >  2

3 -  x, x <  2
20. f i x )  = 2, x =  2

x/2, x >  2
1

21. f i x )  = x -  r
j

x3 — 2x + 5, j

22. f i x )  = 1 - x 2, 
2,

x  — 1 
x  =  — 1
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23.

In Exercises 25-30, give a formula for the extended function that is 
continuous at the indicated point.

25. f{x) = 

27. f ix )  =

29. f ix )  =

30. f ix )  =

x + 3 
sin jc

JC

jc — 4
Vx - 2

x = —3 

x = 0 

jc = 4

r3 — 4x2 — 1 Ijc + 30 
x2 — 4

26. f ix )  = 

28. f ix )  =

x = 2

1
x2 -  1 
sin 4x

x = 0

In Exercises 31 and 32, explain why the given function is continuous. 

31 ./(x ) = - J — 32. gix) 1
jc — 3 Vx - 1

In Exercises 33-36, use Theorem 7 to show that the given function is 
continuous.

3 3 . / ( * ) = ,v + i 

35. / (x) = cos i V  1 — x)

34. f(x) = sin (x2 + 1) 

36. fix)  = tan , + 4

Group A c tiv ity  In Exercises 37^10, verify that the function is con­
tinuous and state its domain. Indicate which theorems you are using, 
and which functions you are assuming to be continuous.

37. y = w  1 _ 38. y = x2 + V 4  -  x
y2 — iVx + 2 

39. y = |x2 -  4x| 40. y = x 1

In Exercises 41^44, sketch a possible graph for a function/ that has 
the stated properties.
41. / ( 3) exists but limx_)3/(x) does not.
42. / ( —2) exists, limt_>_2+ f ix )  = / ( —2), but \\mx_>~2fix )  does not 

exist.
43. /(4) exists, limt_̂ 4/(x) exists, but/is not continuous atx = 4.
44. fix) is continuous for all x except x = 1, where/has a nonremov­

able discontinuity.

45. Solving Equations Is any real number exactly 1 less than its 
fourth power? Give any such values accurate to 3 decimal places.

46. Solving Equations Is any real number exactly 2 more than its 
cube? Give any such values accurate to 3 decimal places.

47. Continuous Function Find a value for a so that the function
, , a _  (x2 — 1, x <  3 

2ax, x > 3
is continuous.

48. Continuous Function Find a value for a so that the function

f ix )  = |
2x + 3, x < 2
ax + 1,

f ix )  =

x >  2 

is continuous.

49. Continuous Function Find a value for a so that the function

4 — x2, x <  — 1 
ax2 — 1, x & — 1

is continuous.

50. Continuous Function Find a value for a so that the function

■*2 + x +  a, x <  
x >  1

is continuous.

51. Writing to Learn Explain why the equation e~x = x  has at 
least one solution.

52. Salary Negotiation  A welder’s contract promises a 3.5% 
salary increase each year for 4 years and Luisa has an initial 
salary of $36,500.

(a) Show that Luisa’s salary is given by

y =  36,500(1.035)inu, 

where t  is the time, measured in years, since Luisa signed the 
contract.

(b) Graph Luisa’s salary function. At what values of t is it 
continuous?

53. Airport Parking  Valuepark charge $ 1.10 per hour or fraction 
of an hour for airport parking. The maximum charge per day is 
$7.25.

(a) Write a formula that gives the charge for x hours with 
0 £  x £  24. iHint: See Exercise 52.)

(b) Graph the function in part (a). At what values of x is it 
continuous?

Standardized Test Questions
|22q  You may use a graphing calculator to solve the following 

problems.

54. True or False A continuous function cannot have a point of 
discontinuity. Justify your answer.

55. True or False It is possible to extend the definition of a func­
tio n /a t a jump discontinuity x = a so th a t/is  continuous at
x =  a. Justify your answer.
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56. Multiple Choice On which of the following intervals is

/(x ) = —~  not continuous?
Vx

(A) (0, oo)

(D )(l,2 )

(B) [0, oo) 
(E )[l,oo)

(C) (0, 2)

57. Multiple Choice Which of the following points is not a point 
of discontinuity of/(x) = Vx — 1?
(A) x = — 1 (B) x = —1/2 (C) x = 0
(D) x = 1/2 (E) x = 1

58. Multiple Choice Which of the following statements about the 
function

f 2x, 0 <  x <  1
f(x)  = 1 ,  x = 1

1 —x +3, 1 <  x <  2
is not true?
(A )/(l ) does not exist.

(B) limx_>o+/M  exists.
(C) limx->2- f ( x) exists.
(D) limM | /(x) exists.
(E) limM l/(x) =/=/(l)

59. Multiple Choice Which of the following points of 
discontinuity of

3)2_  x(x  -  l)(x 2)2(x + l)2(x
x(x — l)(x -  2)(x +  l)2(x — 3)3

Exploration

60. L et/(x) =  (l +  — I .

(a) Find the domain off. (b) Draw the graph off.
(c) Writing to Learn Explain why x = — 1 and x = 0 are 
points of discontinuity off.
(d) Writing to Learn Are either of the discontinuities in part
(c) removable? Explain.
(e) Use graphs and tables to estimate limJ._>0o/(x).

Extending the ideas
61. Continuity at a Point Show that/(x) is continuous a tx  =  a if 

and only if
limi f  (a + h) =f(a).
h->0

62. Continuity on Closed Intervals L et/b e  continuous and 
never zero on [a, b]. Show that either/(x) >  0 for all x in [a, b] 
or/(x) <  0 for all x in [a, b],

63. Properties of Continuity Prove that i f / i s  continuous on an 
interval, then so is \f\.

64. Everywhere Discontinuous Give a convincing argument that 
the following function is not continuous at any real number.

[1, if x is rational
f ( x )  = 0, if x is irrational

is not removable?

(A) x =  — 1 
(D) x =  2

(B) x =  0 

(E) x =  3

(C) x = 1
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Rates of Change and Tangent Lines___________________2 .4
What you'll learn about

• Average Rates of Change

• Tangent to a Curve

• Slope of a Curve

• Normal to a Curve

• Speed Revisited 

. . . and why

The tangent line determines the 
direction of a body's motion at 
every point along its path.

Average Rates of Change
We encounter average rates of change in such forms as average speed (in miles per hour), 
growth rates of populations (in percent per year), and average monthly rainfall (in inches 
per month). The average rate of change of a quantity over a period of time is the amount 
of change divided by the time it takes. In general, the average rate o f  change of a function 
over an interval is the amount of change divided by the length of the interval.

EXAMPLE 1 Finding Average Rate of Change
Find the average rate of change of f(x )  = x3 — x  over the interval [1,3].

SOLUTION

Since/(1) =  0 an d /(3 ) =  24, the average rate of change over the interval [1, 3] is 

/ ( 3 ) - / ( l )  _  2 4 - 0
3 -  1

=  12. Now try Exercise 1.

Experimental biologists often want to know the rates at which populations grow under 
controlled laboratory conditions. Figure 2.27 shows how the number of fruit flies 
(Drosophila) grew in a controlled 50-day experiment. The graph was made by counting 
flies at regular intervals, plotting a point for each count, and drawing a smooth curve 
through the plotted points.

Secant to a Curve

A line through two points on a curve is 
a secant to the curve.

M gA a o sU z  J le e  fe n x u u w e
(1914-1979)

When Marjorie Browne 
graduated from the Uni­
versity of Michigan in 
1949, she was one of 
the first two African 
American women to be 
awarded a Ph.D. in 
Mathematics. Browne 

went on to become chairperson of the 
mathematics department at North 
Carolina Central University, and suc­
ceeded in obtaining grants for retraining 
high school mathematics teachers.

Time (days)

Figure 2.27 Growth of a fruit fly population in a controlled experiment.
Source: Elements of Mathematical Biology. (Example 2)

EXAMPLE 2 Growing Drosophila in a Laboratory
Use the points P(23, 150) and (9(45, 340) in Figure 2.27 to compute the average rate of 
change and the slope of the secant line PQ.

SOLUTION

There were 150 flies on day 23 and 340 flies on day 45. This gives an increase of 340 — 
150 =  190 flies in 45 -  23 =  22 days.

The average rate of change in the population p  from day 23 to day 45 was
Ap  340 -  150 190 o £

Average rate of change: =  ——-------------------— 8.6 flies/day,

or about 9 flies per day.
continued
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Why Find Tangents to Curves?

In mechanics, the tangent determines 
the direction of a body's motion at 
every point along its path.

In geometry, the tangents to two curves 
at a point of intersection determine the 
angle at which the curves intersect.

In optics, the tangent determines the 
angle at which a ray of light enters a 
curved lens (more about this in Section 
3.7). The problem of how to find a tan­
gent to a curve became the dominant 
mathematical problem of the early 
seventeenth century and it is hard to 
overestimate how badly the scientists of 
the day wanted to know the answer. 
Descartes went so far as to say that the 
problem was the most useful and most 
general problem not only that he knew 
but that he had any desire to know.

This average rate of change is also the slope of the secant line through the two points P 
and Q on the population curve. We can calculate the slope of the secant PQ from the co­
ordinates of P and Q.

Ap  340 -  150 190 0 s £\' ,,
Secant slope: —— = ——--- —— =  — -  ~  8.6 flies/day

F A t  45 -  23 22 J
Now try Exercise 7.

As suggested by Example 2, we can always think o f  an average rate o f  change as the 
slope o f  a secant line.

In addition to knowing the average rate at which the population grew from day 23 to 
day 45, we may also want to know how fast the population was growing on day 23 itself. 
To find out, we can watch the slope of the secant PQ  change as we back Q along the curve 
toward P. The results for four positions of Q are shown in Figure 2.28.

Q Slope of PQ = Ap/A/ (flies/day)
(45, 340) 
(40, 330) 
(35,310) 
(30, 265)

(340 -  150)/(45 -  23) *=» 8.6 
(330 -  150)/(40 -  23) 10.6 
(310 - 150)/(35 -  23) 13.3 
(265 - 150)7(30-23) ~  16.4

Time (days) 
(a)

Figure 2.28 (a) Four secants to the fruit fly graph of Figure 2.27, through the point P{23, 150). 
(b) The slopes of the four secants.

In terms of geometry, what we see as Q approaches P along the curve is this: The se­
cant PQ approaches the tangent line AB  that we drew by eye at P. This means that within 
the limitations of our drawing, the slopes of the secants approach the slope of the tangent, 
which we calculate from the coordinates of A and B  to be

350 -  0 ,,
3 5 - ^ i y  ’  1 7 5

In terms of population, what we see as Q approaches P is this: The average growth 
rates for increasingly smaller time intervals approach the slope of the tangent to the curve 
at P  (17.5 flies per day). The slope of the tangent line is therefore the number we take as 
the rate at which the fly population was growing on day t =  23.

Tangent to a Curve
The moral of the fruit fly story would seem to be that we should define the rate at which 
the value of the function y  =  / ( x) is changing with respect to x  at any particular value 
x = a to be the slope of the tangent to the curve y  = f i x )  at x  = a. But how are we to de­
fine the tangent line at an arbitrary point P  on the curve and find its slope from the for­
mula y  =  f ix)'!  The problem here is that we know only one point. Our usual definition of 
slope requires two points.

The solution that mathematician Pierre Fermat found in 1629 proved to be one of that 
century’s major contributions to calculus. We still use his method of defining tangents to 
produce formulas for slopes of curves and rates of change:

1. We start with what we can calculate, namely, the slope of a secant through P  and 
a point Q nearby on the curve.
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2. We find the limiting value of the secant slope (if it exists) as Q approaches P 
along the curve.

3. We define the slope of the curve at P to be this number and define the tangent to 
the curve at P to be the line through P with this slope.

P ie W ie  <$& fy e A s n a t
(1601-1665)

The dynamic approach 
to tangency, invented by 
Fermat in 1629, proved 
to be one of the seven­
teenth century's major 
contributions to calcu­
lus.
Fermat, a skilled linguist 

and one of his century's greatest math­
ematicians, tended to confine his w rit­
ing to professional correspondence and 
to papers written for personal friends.
He rarely wrote completed descriptions 
of his work, even for his personal use.
His name slipped into relative obscurity 
until the late 1800s, and it was only 
from a four-volume edition of his works 
published at the beginning of this cen­
tury that the true importance of his 
many achievements became clear.

Figure 2.30 The tangent slope is 

f ja  + h) -  f ja )

EXAMPLE 3  Finding Slope and Tangent Line
Find the slope of the parabola y =  x2 at the point P(2, 4). Write an equation for the tan­
gent to the parabola at this point.

SOLUTION

We begin with a secant line through P(2, 4) and a nearby point Q(2 +  h, (2 + h)2) on 
the curve (Figure 2.29).

We then write an expression for the slope of the secant line and find the limiting value 
of this slope as Q approaches P along the curve.

Secant slope =  ^  =  °  +  f  ~  *A x h

h2 +  4h +  4 — 4
h

h2 +  Ah
=  h +  A

The limit of the secant slope as Q approaches P  along the curve is

lim (secant slope) = lim (h +  4) =  4.
h—>o

Thus, the slope of the parabola at P is 4.

The tangent to the parabola at P is the line through P (2 ,4) with slope m = 4.

y — 4 =  4(jc — 2)

y =  4jc -  8 +  4

y = Ax — 4 Now try Exercise 11 (a, b).

lim :h->0 h

Slope of a Curve
To find the tangent to a curve y =  f ix )  at a point P (a ,f(a ))  we use the same dynamic proce­
dure. We calculate the slope of the secant line through P  and a point Q(a +  h ,f(a  +  h)). We 
then investigate the limit of the slope as h-> 0 (Figure 2.30). If the limit exists, it is the slope 
of the curve at P  and we define the tangent at P  to be the line through P  having this slope.
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y

Figure 2.31 The two tangent lines to 
y = 1/x having slope —1/4. (Example 4)

All of these are the same:

1. the slope of y =  f(x) at x =  a
2. the slope of the tangent to y  =  f(x) 

at x =  a
3. the (instantaneous) rate of change of 

f(x) with respect to x at x = a
. f(a + h) -  f{a)

4. lim —------- f------ —
/i-> o h

DEFINITION Slope of a Curve a t a Point

The slope of the curve y  = f i x )  at the point P(a,f(a))  is the number

f ( a  + h ) - f { a )
m =  l im ------------- :-----------,

h->0 h

provided the limit exists.

The tangent line to the curve at P is the line through P with this slope.

EXAMPLE 4  Exploring Slope and Tangent

Let f ( x )  =  1 /x.

(a) Find the slope of the curve at x  =  a.
(b) Where does the slope equal — 1 /4?
(c) What happens to the tangent to the curve at the point (a, 1 Id) for different values of a l  

SOLUTION

(a) The slope at x  = a is j j

Hm f ( a  +  h) ~  f  (a) =  Hm a + h a
o h />->o h

1 a — (a +  h)
= lim — •  ;-------rr—

fc->o h a(a + h)
- h= lim • -— ------ 7—

a—>o ha{a +  h)

- 1  1-  lim —-------— =  j.
ĥ >o a{a +  h) a L

a 2 4

a 2 =  4  M ultip ly by - 4 a 2.

a =  ± 2 .

The curve has the slope —1/4 at the two points (2, l /2 ) a n d ( —2, —1/2) (Figure 2.31).
(c) The slope — 1/a2 is always negative. As a—>0+, the slope approaches —oo and the tan­
gent becomes increasingly steep. We see this again as a—>0~. As a moves away from the 
origin in either direction, the slope approaches 0 and the tangent becomes increasingly 
horizontal. Now try Exercise 19.

(b) The slope will be —1/4 if

The expression

f ( a  +  h) ~  f{a)  
h

is the difference quotien t of / a t  a. Suppose the difference quotient has a limit as h ap­
proaches zero. If we interpret the difference quotient as a secant slope, the limit is the 
slope of both the curve and the tangent to the curve at the point x  = a. If we interpret the 
difference quotient as an average rate of change, the limit is the function’s rate of 
change with respect to x  at the point x  = a. This limit is one of the two most important 
mathematical objects considered in calculus. We will begin a thorough study of it in 
Chapter 3.
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About the Word Normal

When analytic geometry was developed 
in the seventeenth century, European 
scientists still wrote about their work 
and ideas in Latin, the one language 
that all educated Europeans could read 
and understand. The Latin word 
normalis, which scholars used for per­
pendicular, became normal when they 
discussed geometry in English.

Particle Motion

We only have considered objects 
moving in one direction in this chapter. 
In Chapter 3, we will deal with more 
complicated motion.

Normal to a Curve
The norm al line to a curve at a point is the line perpendicular to the tangent at that point.

EXAMPLE 5 Finding a N orm al Line

Write an equation for the normal to the curve f{x )  = 4 — x2 at x  = 1.

SOLUTION

The slope of the tangent to the curve at x  =  1 is

lim / ( ■ + « - / » )  =  „ m 4 - ( . +  » * - 3
/z—>0 h h—>0 h

4 — 1 — 2h — h2 — 3
=  lim  :---------------

o h
,. - M 2  +  h)=  l im    =  —2.
a-> o h

Thus, the slope of the normal is 1/2, the negative reciprocal of - 2 .  The normal to the 
curve at (1 ,/(1 )) =  (1, 3) is the line through (1, 3) with slope m = 1/2.

y -  3 =  | ( x -  1)

1  1y — ~  t  +  3y 2 2

1  +  5y  =  +  X2 2

You can support this result by drawing the graphs in a square viewing window.
Now try Exercise 11 (c, d).

Speed Revisited
The function y = 1612 that gave the distance fallen by the rock in Example 1, Section 2.1, 
was the rock’s position function. A body’s average speed along a coordinate axis (here, the 
y-axis) for a given period of time is the average rate of change of its position y =  /( /) .  Its 
instantaneous speed at any time t is the instantaneous rate of change of position with 
respect to time at time t, or

Um / ( .  +  /,) - m
h-> 0 h

We saw in Example 1, Section 2.1, that the rock’s instantaneous speed at t = 2 sec was 
64 ft/sec.

EXAMPLE 6  Investigating Free Fall
Find the speed of the falling rock in Example 1, Section 2.1, at t =  1 sec.

SOLUTION

The position function of the rock is f ( t )  =  16;2. The average speed of the rock over the 
interval between t = 1 and t = 1 +  h sec was

/ ( I  +  h) - / ( l )  _  16(1 + h)2 -  16(1)2 _  \6 (h2 + 2h)
h h h

The rock’s speed at the instant t = 1 was

lim \6(h  +  2) =  32 ft/sec. 
/!-> o

=  16 (h + 2).

Now tr y  Exercise 27.
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Quick R eview  2.4 (For help, go  to Section 1.1.)

In Exercises 1 and 2, find the increments Ax and Ay from point A to 
point B.

1. A(-5,2), B(3, 5) 2. A(l, 3), B(a, b)
In Exercises 3 and 4, find the slope of the line determined by the 
points.

3. (-2 ,3), (5 ,-1) 4. (-3 ,-1 ), (3,3)

In Exercises 5-9, write an equation for the specified line.

5. through (-2, 3) with slope = 3/2

6. through (1, 6) and (4,-1)
3

7. through (1,4) and parallel to y = — —x  + 2
3

8. through (1,4) and perpendicular to y = — — x + 2

9. through (-1, 3) and parallel to 2x +  3y =  5
10. For what value of b will the slope of the line through (2, 3) and 

(4, b) be 5/3?

Section 2.4 Exercises

In Exercises 1-6, find the average rate of change of the function over 
each interval.

2. f i x )  = V 4 x  + 1

(a) [0,2] (b) [10, 12]

4. f ( x )  = In x 
(a) [1,4] (b) [100, 103]

1. f ( x ) = x3 + \
(a) [2, 3] (b) [-1 , 1]

3. f(x) = ex
(a) [ - 2 ,0 ]  (b) [1, 3]

5. f ix )  = cot t
(a) [n/4,  3-77/4] (b) [77/ 6, 77-/2]

6. f i x ) = 2 + cos t
(a) [0, 77 ] (b) [ 7 7 , 77 ]

In Exercises 7 and 8, a distance-time graph is shown.
(a) Estimate the slopes of the secants P Q U PQ 2 , PQ 3, and PQA, 
arranging them in order in a table. What is the appropriate unit 
for these slopes?

(b) Estimate the speed at point P.

7. Accelerating from a Standstill The figure shows the dis­
tance-time graph for a 1994 Ford® Mustang Cobra™ accelerat­
ing from a standstill.

In

Elapsed time (sec)

8. Lunar Data  The accompanying figure shows a distance-time 
graph for a wrench that fell from the top platform of a communi­
cation mast on the moon to the station roof 80 m below.

0 5 10
Elapsed time (sec)

Exercises 9-12, at the indicated point find

(a) the slope of the curve,

(b) an equation of the tangent, and

(c) an equation of the normal.

(d) Then draw a graph of the curve, tangent line, and normal 
line in the same square viewing window.

x — 1
In Exercises 13 and 14, find the slope of the curve at the indicated point.

13. f ( x )  = |jc| at (a) x =  2 (b) x  =  — 3

14. f i x )  =  \x — 2 1 at x = 1

In Exercises 15-18, determine whether the curve has a tangent at the 
indicated point. If it does, give its slope. If not, explain why not.

' 2 — 2x — x 2, x < 0 
2x + 2, x  >  0

x <  0 
x^ — x, x  & 0

15. f ( x)  =

16. f i x )  =

60

40

20
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17. f i x )  =

18. f ( x )  =

1/x,
4 - x

x  £  2 

x  > 2 at x  = 2

33. Table 2.2 gives the amount of federal spending in billions of 
dollars for national defense for several years.

sinx,  0 £ x <  3tt/4 
cosx, 37J-/4 s  x  <  2ir

at x  = 377/4

In Exercises 19-22, (a) find the slope of the curve at x  = a.
(b) Writing to Learn Describe what happens to the tangent at 
x  = a as a changes.

19. y = x 2 + 2

20. y = 2/x

21- y =

22. y = 9 - x 2

23. Free Fall An object is dropped from the top of a 100-m tower. 
Its height above ground after I sec is 100 — 4.9/2 m. How fast is 
it falling 2 sec after it is dropped?

24. Rocket Launch At t sec after lift-off, the height of a rocket is 
312 ft. How fast is the rocket climbing after 10 sec?

25. Area of Circle What is the rate of change of the area of a cir­
cle with respect to the radius when the radius is r = 3 in.?

26. Volume o f  Sphere  What is the rate of change of the volume 
of a sphere with respect to the radius when the radius is r = 2 in.?

27. Free Fall on Mars The equation for free fall at the surface of 
Mars is s = 1.86f2 m with t in seconds. Assume a rock is dropped 
from the top of a 200-m cliff. Find the speed of the rock at t = 1 sec.

28. Free Fall on Jupiter The equation for free fall at the surface 
of Jupiter is 5 = 11.44/2m with t in seconds. Assume a rock is 
dropped from the top of a 500-m cliff. Find the speed of the 
rock at t = 2 sec.

29. Horizontal Tangent At what point is the tangent to 
fix) = x 2 + 4x — 1 horizontal?

30. Horizontal Tangent At what point is the tangent to 
fix)  = 3 — 4x — x2 horizontal?

31. Finding Tangents and Normals

(a) Find an equation for each tangent to the curve y = l/{x — 1) 
that has slope — 1. (See Exercise 21.)

(b) Find an equation for each normal to the curve y =  1 /(x — 1) 
that has slope 1.

32. Finding Tangents Find the equations of all lines tangent to 
y = 9 — x 2 that pass through the point (1, 12).

Table 2.2

Year
National D efense Spending

National Defense Spending ($ billions)
1990 299.3
1995 272.1
1999 274.9
2000 294.5
2001 305.5
2002 348.6
2003 404.9

Source: U.S. Census Bureau, Statistical Abstract o f the United 
States, 2004-2005.

(a) Find the average rate of change in spending from 
1990 to 1995.

(b) Find the average rate of change in spending from 
2000 to 2001.

(c) Find the average rate of change in spending from 
2002 to 2003.

(d) Let x = 0 represent 1990, x  = 1 represent 1991, and so 
forth. Find the quadratic regression equation for the data and 
superimpose its graph on a scatter plot of the data.

(e) Compute the average rates of change in parts (a), (b), and
(c) using the regression equation.

(f) Use the regression equation to find how fast the spending 
was growing in 2003.

(g) Writing to Learn Explain why someone might be 
hesitant to make predictions about the rate of change of 
national defense spending based on this equation.

34. Table 2.3 gives the amount of federal spending in billions of 
dollars for agriculture for several years.

Table 2.3
Year

Agriculture Spending
Agriculture Spending ($ billions)

1990 12.0
1995 9.8
1999 23.0
2000 36.6
2001 26.4
2002 22.0
2003 22.6

Source: U.S. Census Bureau, Statistical Abstract o f the United 
States, 2004-2005.

(a) Let x  = 0 represent 1990, x  = 1 represent 1991, and so 
forth. Make a scatter plot of the data.

(b) Let P represent the point corresponding to 2003, Q t the 
point corresponding to 2000, Q2 the point corresponding to 
2001, and Q3 the point corresponding to 2002. Find the 
slope of the secant line PQ, for i = 1, 2, 3.
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Standardized Test Questions
You should solve the following problems without using a 
graphing calculator.

35. True or False If the graph of a function has a tangent line at 
x = a, then the graph also has a normal line at x =  a. Justify 
your answer.

36. True or False The graph of/(x)= |x | has a tangent line at 
x = 0. Justify your answer.

37. Multiple Choice If the line L tangent to the graph of a func­
tion/at the point (2, 5) passes through the point (—1, -3 ), what 
is the slope of L?
(A) -3 /8  (B) 3/8 (C) -8 /3  (D) 8/3 (E) undefined

38. Multiple Choice Find the average rate of change of 
/ ( x) = x2 + x over the interval [1,3],
(A) - 5  (B) 1/5 (C) 1/4 (D) 4 (E) 5

39. Multiple Choice Which of the following is an equation of the 
tangent to the graph off ix )  =  2/x at x  = 1?
(A) y = —2x (B) y = 2x (C) y = -2 x  + 4

(D) y = - x  + 3 (E) y = x + 3

40. Multiple Choice Which of the following is an equation of the 
normal to the graph of/ ( x) = 2!x at x = 1 ?

(B ) y = ~ x  (C)y = ±x  + 2

(D) y = ——x + 2 (E) y = 2x + 5

Explorations
In Exercises 41 and 42, complete the following for the function, 

(a) Compute the difference quotient 

/ ( I  + /» ) - /( ! )

(b) Use graphs and tables to estimate the limit of the difference 
quotient in part (a) as h—>0.
(c) Compare your estimate in part (b) with the given number.

(d) Writing to Learn Based on your computations, do you 
think the graph of/has a tangent at x = 1? If so, estimate its 
slope. If not, explain why not.

41. fix)  = ex, e 42. f(x) = 2X, In 4
Group Activity In Exercises 43^-6, the curve y = fix)  has a 
vertical tangent at x = a if

or if

Vimf(a  + h ) - f { a )  
h-> 0 h

Umfia  + h ) - f i a )  = 
h-> 0 h

In each case, the right- and left-hand limits are required to be the 
same: both + c o  or both —oo.

Use graphs to investigate whether the curve has a vertical tangent at 
x = 0.
43. y = x215 44. y = x3/5

45. y = x l/3 46. y = x2/3

Extending the Ideas
In Exercises 47 and 48, determine whether the graph of the function 
has a tangent at the origin. Explain your answer.

47. f ix )  =
x = 0

ao st \ U  sin —, x * 048. f(x)  = x
10, x = 0

49. Sine Function Estimate the slope of the curve y = sin x at 
x = 1. i f f  int: See Exercises 41 and 42.)

Quick Quiz for AP* Preparation: Sections 2.3 and 2.4

f You may use a calculator with these problems.
1. Multiple Choice Which of the following values is the average 

rate of/(x) = Vjc + 1 over the interval (0, 3)?
(A) - 3  (B) — 1 (C) -1 /3  (D) 1/3 (E) 3

2. Multiple Choice Which of the following statements is false 
for the function

3

/ «  =
4X’

0 < x < 4

2, x = 4 
- x  + 1, 4 <  jc <  6 

1, 6 <  x < 8?
(A) limx_>4/(x) exists (B)/(4) exists
(C) l im ^ 6/(jc) exists (D) limM8-/(.v) exists
(E ) /is  continuous aix =  4

3. Multiple Choice Which of the following is an equation for 
the tangent line to/(x) = 9 — x2 atx = 2?

(A)y = } *  + f
(C) y =  —4x — 3
(E) y = 4x + 13

(B) y = -4 x  + 13 

(D) y = 4x -  3

4. Free Response Let f ix)  = 2x -  x 2.
(a) Find/(3). (b) Find/(3 + h).

(c)Find^ 3 + / i ) - ^ 3).
h

(d) Find the instantaneous rate of change o f /a t x = 3.
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Chapter 2 Key Terms
average rate of change (p. 87) 
average speed (p. 59) 
connected graph (p. 83)
Constant Multiple Rule for Limits (p. 61) 
continuity at a point (p. 78) 
continuous at an endpoint (p. 79) 
continuous at an interior point (p. 79) 
continuous extension (p. 81) 
continuous function (p. 81) 
continuous on an interval (p. 81) 
difference quotient (p. 90)
Difference Rule for Limits (p. 61) 
discontinuous (p. 79) 
end behavior model (p. 74) 
free fall (p. 91)

horizontal asymptote (p. 70) 
infinite discontinuity (p. 80) 
instantaneous rate of change (p. 91) 
instantaneous speed (p. 91) 
intermediate value property (p. 83) 
Intermediate Value Theorem for Continuous 

Functions (p. 83) 
jump discontinuity (p. 80) 
left end behavior model (p. 74) 
left-hand limit (p. 64) 
limit of a function (p. 60) 
normal to a curve (p. 91) 
oscillating discontinuity (p. 80) 
point of discontinuity (p. 79)
Power Rule for Limits (p. 71)

Product Rule for Limits (p. 61)
Properties of Continuous Functions (p. 82) 
Quotient Rule for Limits (p. 61) 
removable discontinuity (p. 80) 
right end behavior model (p. 74) 
right-hand limit (p. 64)
Sandwich Theorem (p. 65) 
secant to a curve (p. 87) 
slope of a curve (p. 89)
Sum Rule for Limits (p. 61) 
tangent line to a curve (p. 88) 
two-sided limit (p. 64) 
vertical asymptote (p. 72) 
vertical tangent (p. 94)

Chapter 2 Review Exercises
The collection of exercises marked in red could be used as a chapter 
test.
In Exercises 1-14, find the limits.

x2 + 1
1. lim (x3 — 2x2 + 1)

x - , - 2

3. lim V l  — 2x
x—>4

l l
2 + x 2

5. lim
. H O  ^

X 4 +  X 3 

7 v l ™  1 2 x 3 +  128

X  CSC X  +  1
9. lim --------------x->0 x csc x

11. lim int (2x — 1)
x->7/2+

13. lim e x cos x
X—>00

2. lim11111 — ^ ~  —
*->-2 3x—  2x + 5

4. lim V 9  -  x 2
x—>5

, 2x2 + 36. lim• n i i i  -  o  z r
*->±00 5x2 + 7 

sin 2x
8. lim

*->0 4x

10. lim ex sin xx—>0

12. lim int (2x — 1)
x—>7/2“

14. lim -A' + sinx

In Exercises 15-20, determine whether the limit exists on the basis 
of the graph of y = fix).  The domain o f / is  the set of real numbers.

16. lim f{x)15. lim f ix )
X—

17. lim f ix )
X —>C

19. lim f ix )
x—>b

18. lim /(x)X—>C
20. lim f ix )

' x - w  X  +  COS X

In Exercises 21-24, determine whether the function/used in 
Exercises 15-20 is continuous at the indicated point.
21. x = a 22. x = b

23. x = c 24. x =  d
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In Exercises 25 and 26, use the graph of the function with domain
- 1  < x <  3.

(a) lim g{x).
x—>3_

25. Determine

(b) *(3).

(c) whether g(x) is continuous at x  =  3.

(d) the points of discontinuity of g(x).

(e) Writing to Learn whether any points of discontinuity are 
removable. If so, describe the new function. If not, explain why 
not.

y

26. Determine

(a) lim k(x). (b) lim k(x).
X— >1+

(c) k (1).

(d) whether k(x) is continuous at x =  1.

(e) the points of discontinuity of k(x).

(f) Writing to Learn whether any points of discontinuity are 
removable. If so, describe the new function. If not, explain why 
not.

In Exercises 27 and 28, (a) find the vertical asymptotes of the graph 
°f  y = /(x), and (b) describe the behavior of/(x) to the left and right 
of any vertical asymptote.

27. f ( x)  =  28. f i x )  = X ~ l
x + 2 x2 (x +  2)

In Exercises 29 and 30, answer the questions for the piecewise- 
defined function.

29. f i x )  =

(a) Find the right-hand and left-hand limits o f /a t x = —1,0, and 1.

(b) Does/have a limit as x approaches —1? 0? 1? If so, what is 
it? If not, why not?

(c) Is/continuous atx  =  -1? 0? 1? Explain.

1, x <  —1
—x, - 1  < x < 0
1. x =  0
—X, 0 <  x <  1
1, x >  1

™ \ \\x3 ~  4*l> 1
3°. f ix )  = \ x2 _ 2 x - 2, x >  1

(a) Find the right-hand and left-hand limits o f f  at x = 1.

(b) D oes/have a limit as x—>1? If so, what is it? If not, why 
not?

(c) At what points is/continuous?

(d) At what points is/discontinuous?

In Exercises 31 and 32. find all points of discontinuity of the function.

31. f(x)  = 32. gix) = V 3 x + 2

In Exercises 33-36, find (a) a power function end behavior model
and (b) any horizontal asymptotes.

r,  ̂ 2x +  1 2x2 + 5x -  133. f ix )  = 2 ^  ^ , 34. f ix )  = ■

35. f i x )  =

x — 2x + 1

X 3 -  4x2 + 3x +  3 
x — 3

36. f i x )  = ■

x- +  2x

1 — 3x2 +  x — 1 
x3 — x +  1

In Exercises 37 and 38, find (a) a right end behavior model and (b) a 
left end behavior model for the function.

37. f i x )  = x + ex 38. f i x )  =  In |x| +  sinx

Group Activity In Exercises 39 and 40, what value should be as­
signed to k to m ake/a  continuous function?

x2 +  2x
39. f i x )  =

40. f i x )  =

15
x — 3

k,

2x
k,

Group Activity In Exercises 41  and 4 2 ,  sketch a graph of a func­
tion /that satisfies the given conditions.

41. lim /(x) =  3, lim f ix )  =X—»oo X—> — 00
lim fix) = lim f ix )  = — °o

x—»3+ x—>3~

42. lim fix)  does not exist, lim f ix )  = /(2 )  =  3
x—>2 x—>2+

43. Average Rate of Change Find the average rate of change of 
fix)  = 1 +  sinx over the interval [0, 7t/2].

44. Rate o f Change Find the instantaneous rate of change of the 
volume V = (\/3)Trr2H  of a cone with respect to the radius r at 
r =  a if the height H  does not change.

45. Rate of Change Find the instantaneous rate of change of the 
surface area S = 6x2 of a cube with respect to the edge length x 
at x =  a.

46. Slope of a Curve Find the slope of the curve y =  x1 -  x — 2 at
x =  a.

47. Tangent and Norm al Let f ix )  = x2 -  3x and P = (1,/(1)). 
Find (a) the slope of the curve y =  fix)  at P, (b) an equation of 
the tangent at P, and (c) an equation of the normal at P.



Chapter 2 Review Exercises 97

48. Horizontal Tangents At what points, if any, are the tangents 
to the graph of/(x) = x2 — 3x horizontal? (See Exercise 47.)

49. Bear Population The number of bears in a federal wildlife 
reserve is given by the population equation

200
P(t)  = 1 + 7e_al< ’

where t is in years.
(a) Writing to Learn Findp(0). Give a possible interpreta­
tion of this number.
(b) Find lim/?(;)•

/ - >  00

(c) Writing to Learn Give a possible interpretation of the re­
sult in part (b).

50. Taxi Fares Bluetop Cab charges $3.20 for the first mile and 
$1.35 for each additional mile or part of a mile.
(a) Write a formula that gives the charge for x  miles with
0 <  x <  20.
(b) Graph the function in (a). At what values of x  is it 
discontinuous?

51. Table 2.4 gives the population of Florida for several years.

Table 2.4
Year

Population of Florida
Population (in thousands)

1998
1999
2000 
2001 
2002 
2003

15,487
15,759
15,983
16,355
16,692
17,019

Source: U.S. Census Bureau, Statistical Abstract o f the United 
States; 2004-2005.

(a) Letx = 0 represent 1990, x  = I represent 1991, and so forth. 
Make a scatter plot for the data.
(b) Let P  represent the point corresponding to 2003, <2i the 
point corresponding to 1998, Q2 the point corresponding to 
1999 ,.... and Q5 the point corresponding to 2002. Find the 
slope of the secant the PQj for i = 1, 2, 3, 4, 5.
(c) Predict the rate of change of population in 2003.
(d) Find a linear regression equation for the data, and use it to 
calculate the rate of the population in 2003.

lim [/(*) + g(x)] = 2,
X— >C

lim [ f{x )  -  g{x)] = 1,
x—>c

and that limMC/(x) and limMC g(x) exist. Find 
l i n W /W  and limx ^ c  gix).

52. Lim it Properties Assume that

AP* Examination Preparation
You should solve the following problems without using a 
graphing calculation.

53. Free Response Let f ( x )  = -
lx2 ~  91'

(a) Find the domain o ff .

(b) Write an equation for each vertical asymptote of the graph off.

(c) Write an equation for each horizontal asymptote of the 
graph off .

(d) Is/odd, even, or neither? Justify your answer.
(e) Find all values of x  for which/is discontinuous and classify 
each discontinuity as removable or nonremovable.

xr — a2x  if x  <  2,
4 — 2x2 if x  s  2.

54. Free R esponse Let/(x) =

(a) Find limx^ 2-f{x).

(b) Find limx^ 2+f(x ) .

(c) Find all values of a that make/continuous at 2. Justify your

x3 — 9 y - 1
55. Free Response Let f i x )  = - — ----- L

x2 + 3
(a) Find all zeros o ff .

(b) Find a right end behavior model gix) for/.
f  C'O(c) Determine lim / ( x) and lim  -----.

*-> o o  * -> oo  g ( x )


